

Diploma Work

Grasping a Book from a Table with a 7DOF
Manipulator

Submitted by:
Bãbãu Mircea Alexandru

August 2007

Supervisors:

Prof. Dr.-Ing. Axel Gräser
Dipl. Ing. Darko Ojdanić
Prof. Dr.-Ing. Ivan Bogdanov

Contents

1. Introduction..1
 1.1 Functional Robot with desterous arm and user-frIEndly interface for
Disabled people...2
 1.2 MASSiVE ..5
 1.3 Outline of the following chapters...8
2. Mathematical Background ...9
 2.1 Matrices and Vectors ...9
 2.2 Cartesian coordinate system...10
 2.3 Coordinate transformations..11
 2.4 Homogenous transformations matrices and Inverse transformations 13
 2.5 Compound transformations...14
 2.6 Standard transformations ..15
 2.7 Euler angles..16
 2.8 Manipulator kinematics..19
 2.8.1 Direct kinematics and Denavit-Hartenberg convention19
 2.9 Motion planning…...……...…………………..…………………..... 21
 2.10 Robot control ...24
3.Grasping the book...27
 3.1 The Task ..27
 3.2 The layout of the experiment enviroment…………...………………28
 3.3 The structure of the program..30
 3.4 The skills..31
 3.4.1 MoveToObjectAndPress()……………………………………....31
 3.4.2 MoveObjOnPlatform()..36
 3.4.3 MoveBookToGrasp() ..39
 3.5 MVR picture ...41
 4.Conclusion and future work…...………………………………….……..42
 Reference………………………………………………………………......43
APPENDIX A……………………………………………………………...44
APPENDIX B……………………………………………………………...64

List of figures

 1: FRIEND II system………………………………………………………1
 2: Hand-like gripper………………………………………………………..3
 3: Intelligent tray…………………………………………………………...3
 4: Imagine capturing system……………………………………………….4
 5: Control architecture………………………………………………...........5
 6: Library “book” scenario………………………………………………....6
 7: The sequence of calling a skill…………………………………………..7
 8: Cartesian coordinate system ………………...…………………………11
 9: Relationship between two coordinate systems .………...……..……….12
 10: Coordinate transformations in an open-chain manipulator …………..15
 11: Euler angles…………………… ……………………………………..17
 12: Roll, pitch and yaw angles for a manipulator………………………....18
 13: Denavit-Hartenberg kinematics parameters for revolute joints…….... 20
 14: Geometry of the main and additional directions…………………..…..23
 15: A link manipulator with the attached base frame, task frame,
 and configuration variables………………………………………………25
 16: Standard robot control structure in Cartesian space…………...…........25
 17: Closed-loop control with respect to tool center point (TCP)……….....26
 18 : Table layout…………………………………………………………...28
 19: Book alignment………………………………………………..………29
 20: MVR picture of the robot…...41

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 1

| 1.Introduction

 The aim of this work is to enable disabled people to work again. One
of the proposed scenarios is the library task”. Within this scenario, user
should be able to do several manipulative actions, such as: moving the robot
arm towards a book, taking the book from a shelf, scanning the book etc.

This diploma work deals with only a part of the library scenario, like
approaching the book, moving and scanning the book. For the
implementation of these skills the FRIEND II system is used.

Fig.1 FRIEND II system

The rehabilitation robot FRIEND II (Functional Robot with dexterous

arm and user-frIENdly interface for Disabled people) is the successor of the
FRIEND I system. The basic component of FRIEND II is the commercial
wheelchair with a mounted lightweight robot arm. Additionally the system is
provided with a tactile skin and a scale (both combined in the wheelchair
tray), a stereo camera system, a computer system, a force torque sensor and

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 2

a hand prosthesis. The latter ones are mounted to the last joint of the robot
arm.

The long-term goal of the overall project is the support of disabled
people at activities of daily living (ADL). To reach this goal a software
framework was developed that introduces a modified hybrid multilayer-
architecture to process semi-autonomous tasks.

1.1 Functional Robot with dexterous arm and user-
frIEndly interface for Disabled people

To act safely and effectively in a real unstructured and clustered
environment, rehabilitation robots require dexterous manipulators with at
least 7 joints (degrees of freedom, or DoFs) like a human arm. FRIEND II is
equipped with such a dexterous lightweight robot arm with 7 joints. This
electrically driven robot arm was developed by AMTEC robotics GmbH
(Berlin) with the functional specification given by the IAT. It has a
humanlike kinematics: the arm is composed of a series of turn- and pan-
joints with perpendicular axes respectively.

The combination of a turn-pan-turn-joint is cinematically equivalent
to a spherical joint like the human shoulder or the wrist joint, and the middle
(the 4th) pan-joint corresponds to the elbow. The arm is mounted on a linear
axis which allows it to drive in a specific home position and reduce visibility
if it is not in use. At the wrist a multi-axis force/torque sensor, model
Gamma, from ATI-Industrial Automation (NC, USA) is integrated.

This compact, light and robust monolithic transducer uses silicon

strain gauges, providing high noise immunity, to sense forces and torques
from all three directions (x, y and z) of the tool frame. To process the strain

gauge information into digital CAN-Bus signals a compact wrist mounted
electronics unit has been developed.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 3

Fig.2 Hand-like gripper

The robot arm is equipped with an Otto Bock Sensor-Hand, used as
gripper. The necessary mechanical as well as electrical adaptations were
made in agreement with the Otto Bock Health Care (Duderstadt, Germany).
A gripper force and a slip control mode which will be activated from the
FRIEND II automation system are integrated in the Sensor-Hand.

Fig.3 Intelligent tray

FRIEND II is equipped with an “intelligent” tray as a kind of a smart
device. The term ‘smart’ expresses its ability to measure the weight of
objects placed on the tray and to provide the position information about the
placement of the objects relative to the tray coordinate system. The tray can
be divided into two subsystems: A scale for the measurement of weight
changes of objects placed on the tray and an artificial skin (touchpad) for the
detection of object positions. The scale consists of an off-the-shelf digital
scale with a measuring precision of ±1g that is connected to the main system
PC. The position detection is realized by a touchpad sensor that was
developed at the IAT. The touchpad consists of a 48x30 matrix, where each

matrix element has binary output. Binary 1 denotes the presence of a weight
greater then 5g per element, 0 indicates that there is no load on the

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 4

corresponding matrix element. Hence, the result can be treated as a binary
image and known image processing methods can be used for object
segmentation.

Fig.4 Imagine capturing system

The vision system of the FRIEND II system consists currently of two
pan-tilt-Zoom cameras by Sony. They are combined to a stereo camera
system and the image capturing is done by two PCI capture devices. The
overall system is controlled by a 3-PC system, each with a Pentium 4
processor at 3 GHz. The first system is used for the image processing, the
second for the manipulator motion planning and the third for task planning
processes and the Human-Machine-Interface (HMI). The interconnection
between these computer systems is realized using the free CORBA
implementation ACE/TAO. As graphical interface to the user a 14" LCD
Display is mounted to the tray.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 5

1.2 MASSiVE - Multilayer Architecture for Semi-
Autonomous Service-Robots with Verified Task-
Execution

Fig.5 Control architecture

A necessary prerequisite for a service robotic system, acting in mostly
unstructured and clustered environment, is a carefully designed concept of a
software framework. The base of the software framework used for the
Friend II system are two principles: Semi-structuring of tasks and close
integration of the user’s cognitive capabilities during the execution of a task.
Without a structured approach and restrictions towards feasibility, the
service robotic systems’ complexity leads to very high costs and low
efficiency and the realization is estimated to be a rather long-term goal.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 6

Fig.6 Library “book” scenario

To fulfill the requirements of semi-autonomous task execution, the top
layer of MASSiVE, usually being the deliberator, has been replaced with a
human-machine-interface (HMI). This HMI specially satisfies the needs in
the field of rehabilitation robotics but also provides good advantages for
general service robots, such as independence from the input device hardware
or controlled direct access to actuators. Subsequently, the ability of
deliberation has been moved to sequencer which coordinates command-
requests, human-machine interactions as well as autonomously executed
reactive operations on base of so called process-structures. These process-
structures are used as input for task planning and execution in the sequencer
and subsumes predefined semi-structured task knowledge. The output of the
sequencer is an generated plan for task execution that consists of
autonomously processable sub-tasks.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 7

Fig.7 The sequence of calling a skill

On base of the generated plan the task execution takes place in the
reactive layer or in case of user interaction in the HMI. MASSiVE provides
for task execution a CORBA-based servant network (powered by the free
CORBA implementation ACE/TAO). So-called skill-servers offer basic
system skills, which are algorithms that operate on base of sensor input and
control the system’s actuators. In most cases the skills will be realized as
closed control loops and thus realize reactive system behavior.

The advantages of CORBA are mainly the location transparency of

modules as well as the opportunity for asynchronous skill execution. The
first aspect means that the physical relocating of modules does not affect the
system design whereas the latter aspect is mandatory for the effective and
safe operation of a multi-sensor system including the ability to abort the
execution at any time. The skill-servers in the reactive layer group system
hardware according to functionality and they are responsible for the
management of the hardware-servers associated to them

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 8

1.3 Outline of the following chapters

The concern is to grasp a book from the table using a manipulator

with seven degrees of freedom. This is the task that this project had dealt
with, as shown in the next chapters.

The second chapter introduces the mathematical basic needed to

complete the task from the notion about matrices and vectors to trajectory
planning and robot control.

The third chapter deals with the problem itself, explains the structure

of the program and provides further information about the skills created for
this task.

The forth chapter states the conclusion of this project and some guide

lines for future work.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 9

| 2.Mathemathical Background

 The study of robot manipulation is concerned with the relationship
between objects as well as between objects and manipulators. Since the
description of these relationships is based on the use of vectors,
transformation matrices and coordinate systems, the goal of this section is to
establish notation and to review mathematics.

2.1. Matrices and Vectors

Matrices are denoted by uppercase bold letters like: R, T, …
A matrix R of dimensions (m x n), with m and n positive integers, is

an array of elements rij arranged into m rows and n columns:

If m = n, the matrix is said to be square. An (n x n) square matrix R is
said to be diagonal if rij = 0 for i ≠ j. If an (n x n)

diagonal matrix has all unit elements on the diagonal (rii = 1), the matrix is
said to be identity matrix and is denoted by In.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 10

Vectors are denoted by lowercase bold letters like: v, u,…
In contrast to scalar quantity characterized by magnitude only, vector

are characterized by its direction as well as by its magnitude. Usually, a
vector is represented graphically by a directed line segment whose length
and direction correspond to the magnitude and direction of the vector.

The scalar product (dot product or inner product) of two given vectors v
and u is defined as:

v ⋅u = v1 u1 + v2 u2+ v3 u3,
or

v ⋅u =|v| ⋅ |u| ⋅ cosθ,

where θ is the angle between the two vectors.

2.2. Cartesian coordinate systems

If there is a subset of linearly independent vectors { x0 ,y0,z 0} in three-

dimensional vector space V and a set of scalars { v1, v2,v3 } such that every
vector v in V can be expressed as:

v = v1 x0 + v2 y0 + v3 z0

then it is said that v is linear combination of the vectors {x0 ,y0 ,z 0} which
represent the basis vectors for a vector space V.

If a set of basis vectors {x0,y0,z0} are all drawn from a common origin
0 and are orthogonal to each other, that is, if they intersect at right angles at

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 11

the origin 0, then they form a rectangular or Cartesian coordinate system.
Furthermore, if each of the basis vectors is of unit length, the coordinate
system is called orthonormal. Basis vectors of an orthonormal coordinate
system (orthonormal vectors) satisfy the following equations:

x0 ⋅ y0 =0; x0 ⋅ z0 = 0; y0 ⋅ z0 =0; ,
 |x0| = |y0| = |z0| =1.

Fig.8. Cartesian coordinate system

2.3. Coordinate transformations

Consider two coordinate systems shown in figure below. Let {A} be

the orthonormal reference frame and {xA ,yA , zA } be the unit vectors of the
frame axis. The coordinate frame {B} is completely described with respect
to {A} (its position and orientation is completely defined related to {A}) by
the following vectors:

A vA0→ B0- vector from the origin of {A} to the origin of {B} expressed
related to {A}

AzB, AyB, AxB - orthonormal vectors of {B} expressed with respect to {A}

where for the sake of notation simplicity the following notation is adopted:

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 12

Fig.9 Relationship between two coordinate systems

The orthonormal vectors of related coordinate system {B} with

respect to {B} are expressed by:

while related to {A} these vectors can be written in the form:

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 13

2.4. Homogenous transformations matrices and Inverse
transformations

Homogenous coordinates play also an important role in projective

geometry. Homogenous coordinates embed three-dimensional space R3 into
P3, the three-dimensional projective space, which is R4.As a result,
inversions or combinations of linear transformations are simplified to
inversion or multiplication of the corresponding matrices.

Matrix ATB is so-called transformation matrix of the coordinate

system {B} to coordinate system {A}. Using homogenous transformation
matrices we can write in the case of

pure rotation of the coordinate system {B} with respect to {A}matrix ATB is
of the form:

and in the case of pure translation of the coordinate system {B} with respect
to {A} matrix has the following form:

 Where the notation have the following meaning:

Ipj - point vector defining the coordinates of a point j with respect to
the coordinate system{I};

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 14

A
 RB =[AxB AyB AzB]- (3 x 3) matrix defining the rotation of the

coordinate system {B} with respect to {A};

Inverse transformations is the idea starting from given transformation
matrix of the coordinate system {B} to reference coordinate system {A},
ATB , to determine the inverse.

 In general, given a transformation matrix

the inverse is

where p, n, o and a are column vectors of the transformation matrix T and
"." represents the vector dot (scalar) product.

2.5. Compound transformations

The ability to perform matrix multiplication to yield compound
transformations is the primary reason for the introduction of the (4x4)
homogenous transformation notation. The described ability is particularly

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 15

useful in robotics since it enables the combination of mathematical and
graphical description of a manipulator as open-chain constituted by n+1
links connected by n joints where a coordinate frame is attached to each link.
The direction of arrow, pointing from one origin to another origin, indicates
which way the frames are defined as it is shown in the figure in the case of
an open-chain constituting of 5 links.

Fig. 10. Coordinate transformations in an open-chain manipulator

Then, the coordinate transformation describing the position and

orientation of the coordinate frame {F} attached to the end-effector (end-
effector frame) with respect to base frame {A} is given by the following
transfer equation:

2.6. Standard transformations

In many problems, the relationship between coordinate systems will

be defined in terms of rotations about the x, y or z axes. Using the (4 x 4)
homogenous coordinate transformation matrix notation, the transformation
matrix ATB representing the rotation of the coordinate system {B} by ϕ
degrees about the z axis with respect to {A} is of the form:

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 16

 According to the same procedure as above, the transformation matrices
representing the rotation of the coordinate system {B} by α degrees about

the x and by β degrees about the y axes with respect to {A} are of the form:

2.7. Euler angles

The nine elements in a general (3x3) rotation matrix, defining the
rotation of one coordinate system with respect to another, are not
independent quantities but related by six constraints due to the orthogonality
conditions. This implies that three parameters (three different independent
rotations around frame axes) are sufficient to describe orientation of a rigid
body in space. Frequently used way to specify an arbitrary rotation matrix in
terms of only three independent quantities is to use the so-called Euler
angles. In the following three sets of Euler angles are analyzed: the so-called
ZYZ, ZYX and Roll, Pitch, Yaw angles.

The rotation described by Euler angles, known as ZYZ angles, is
obtained as composition of the following elementary rotations: rotation by φ
degrees about the z axis, then rotation by θ degrees about the new y axis (y'),

and, finally, rotation by ψ degrees about the new z axis (z'').

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 17

Fig. 11. Euler angles

The Euler transformation, Euler(φ, θ, ψ), can be computed by

multiplying of the matrices of above mentioned elementary rotations, made
with respect to the current frame (transformed coordinate system):

The Euler angles are known as ZYX angles since they correspond to
rotation by φ degrees about the z axis, then rotation by θ degrees about the

new y axis (y'), and, finally, rotation by ψ degrees about the new x axis (x'').
In this case, the Euler transformation can be computed as follows:

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 18

Another set of Euler angles originates from a representation of
orientation in the (aero)nautical field. These are so-called Roll, Pitch and
Yaw angles (RPY). These angles denote the typical motions of an (air)craft
or a ship. Roll corresponds to a rotation by φ about the z axis, pitch

corresponds to a rotation by θ about the y axis while yaw corresponds to a

rotation by ψ about the x axis. In the case of the manipulator end-effector

the angles φ, θ and ψ represent rotations defined with respect to a fixed
frame attached to the centre of the end-effector as shown in figure:

Fig.12. Roll, pitch and yaw angles for a manipulator

The resulting frame orientation is obtained by composition of

rotations with respect to the fixed (reference) frame where the rotation about
x axis is followed by a rotation about reference y axis and, finally, followed
by rotation about the reference z axis. The corresponding rotation matrix can
be computed via multi-plication of the matrices of elementary rotation as
follows:

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 19

2.8. Manipulator kinematics

There are two problems regarding the manipulator kinematics.

The direct or forward kinematics problem is concerned with the

relationship between the individual joints of the robot manipulator and the
position and orientation of the tool or end-effector. Stated more formally, the
forward kinematics problem is to determine the position and orientation of
the end-effector frame, given the values for the joint variables of the robot,
relative to the robot base frame. Sometimes, the direct kinematics problem is
stated as changing the representation of manipulator position from a joint
space description into a Cartesian space description. In contrast to forward
kinematics problem, the inverse kinematics problem can be stated as
follows: given a desired position and orientation for the end-effector of the
robot, determine a set of joint variables that achieve the desired position and
orientation.

2.8.1. Direct kinematics and Denavit-Hartenberg
convention

For the general spatial case, the solution for the Direct kinematics is

not so trivial as in the case of simple planar robot for example. This is
because the joint angles do not simply add as they do in the planar case.
Using of Denavit-Hartenberg kinematics parameters provide a systematic,
general method for the solution of direct kinematics problem.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 20

Fig.13 Denavit-Hartenberg kinematics parameters for revolute joints

According to the so-called Denavit-Hartenberg convention the coordinate
frame of link i is defined as follows:

• Choose axis zi along the axis of joint i + 1.

• Locate the origin Oi at the intersection of axis zi with the common
normal to axes zi-1 and zi. Also, locate Oi ' at the intersection of the
common normal with axis zi-1.
• Choose axis xi along the common normal to axis zi-1 and zi with
direction from joint i to
joint i + 1.

The Denavit-Hartenberg convention gives a nonunique definition of the link
frame in the following cases:

• For frame 0 only the direction of axis z0 is specified. The origin O0
and the axis x0 can be arbitrarily chosen.
• For frame n, since there is no joint n + 1, zn is not uniquely defined
while xn has to be normal to axis zn-1. Typically, joint n is revolute,
and thus zn is to be aligned with the direction of zn-1.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 21

• When two consecutive axes are parallel, the common normal
between them is not uniquely defined.
• When two consecutive axes intersect, the direction of xi is arbitrary.

• When joint i is prismatic, the direction of zi-1 is arbitrary.

In all such cases, the indeterminacy can be exploited to simplify the

procedure. For instance, the axes of consecutive frames can be made
parallel. Once the link frames have been established, the Denavit-Hartenberg
parameters (DH parameters) that completely specified the position and
orientation of frame i with respect to frame i-1 can be defined as:

ai – distance between Oi and Oi ',
di – coordinate of Oi ' along zi-1.
αi – angle between zi-1 and zi axes about axis xi.
qi – angle between axes xi-1 and xi about axis zi-1.

The parameters ai and αi are always constant and depend only on the

geometry of connection between consecutive joints established by link I
From the remaining two parameters of the above four only one is variable
depending on the type of joint that connects link i-1 to link i.

2.9. Motion planning

Motion planning algorithms can be implemented in either Cartesian

space (operational, W-space) or configuration space (C-space). Cartesian
space represents a Euclidean space where the robot moves. C-space is the set
of all possible configurations of a manipulator. The configuration of the
manipulator is given in terms of joint variables – one for each joint. The
dimension of the C-space is the number of parameters required to fully
specify a configuration of the robot, which usually corresponds with the
number of joints .

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 22

Most commonly used algorithms for motion planning are: cell decom-

position, roadmaps and potential fields. In cell decomposition approach, the
entire space is divided into a number of non-overlapping cells. The space is
searched by using graph based searching algorithms. The nodes of the graph
represent each cell and only neighbour cells can generate connected nodes.
Cell decomposition can be exact, where the cells do not have to be the same
size but contain only free space, or approximate, in which case the entire
region is divided into equal sized cells that can be marked as either free or
occupied. Most commonly used graph-based searching algorithms are:
depth-first search, breadth-first search, best-first search, A* search,
randomized search (like simulated annealing and GA) . Which method
should be used is not easy to recommend since they have different
characteristics regarding complexity (running-time), optimality of solution,
guarantee of giving a solution if one exists, etc. In some cases better results
can be obtained with approaches like backward or bidirectional search.

The motion planning problem is defined here as: finding an obstacle

free trajectory in a given environment, where the goal is given as a location
in Cartesian space. By “location” it is meant that the position and orientation
of the gripper are defined. It is assumed that the environment is dynamic but
its description and obstacles’ displacement are completely known during the
planning. This means that the distance calculation between manipulator and
obstacles are always corresponding to the actual situation. The manipulator's
motion will be planed step by step, so that in each step the manipulator has
to choose between several incrementally generated TCP-positions. In that
way, the manipulator will have the freedom to move through the free space
and each choice will refer to the current robot configuration and state of
environment. It has to be noticed that the ambition of motion planning is not
only to reach the goal location but also to have a well configured motion. In
each step, the distances between robot links and obstacles are observed and
taken into account for the selection of the next configuration.

Additional TCP positions for the next step can be generated by a small
variation of the main direction, which is computed as a straight line from the
current TCP to the goal. Hence, in general, the goal directed movement of
the end-effector (goalseeking) is guaranteed.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 23

Fig.14 Geometry of the main and additional directions

Let k be the number of all directions, including the main one. The
manipulator will pass in one step only a discrete distance d along the given
direction. This means that in each step k points will be offered to be the next
TCP position. These points will be called local goals in the following text.
From figure …… can be seen that local goals lie on a sphere with the centre
in the TCP. In a planar case it would be a circle. For making a decision in
which direction to move, robot postures (configurations) for all k possible
TCP positions have to be calculated. In order to calculate needed inverse
kinematics solutions, a gripper orientation for each local goal has to be
defined. The orientation will be specified in a way that the gripper is
gradually governed from its current orientation toward its goal orientation.

 The technique with two rotations as proposed in [Paul R. P., “Robot
Manipulators: Mathematics, Programming and Control”, MIT Press, 1981.]
is used here. The first rotation will serve to align the gripper in the required
final direction, and the second rotation will control the orientation of the
gripper about its axes. The alignment ratio between the current and the goal
gripper orientation is proportional to r = d/D, where D is the distance from
the gripper position to the goal position. This will insure that the gripper
gradually, through the motion, achieve its final orientation. After the inverse
kinematics calculations, k resulting configurations are available. Among
these set of configurations one will be selected for the next step. If the
manipulator is redundant, several (m) inverse kinematics solutions could be
found for one local goal. In that case, the best configuration will be chosen

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 24

among k⊕m configurations. These m inverse kinematics solutions are
determined by choosing m different postures in the nearness of the current
robot posture. For the manipulator with 7DOF humanlike kinematics, m
solutions can be resolved by using a redundant circle. Each solution,
differing in elbow position, will correspond to one sample on the redundant
circle. A fast inverse kinematics solution can be obtained by using the
concept ''Kinematic Configuration Control'' (KCC) .
Once the configuration is selected, the manipulator will execute the motion
and the previously explained procedure will be repeated.

2.10 Robot control

The control problem for robot manipulators is the problem of

determining the time history of joint inputs required to cause the end-
effector to execute a commanded motion. The joint inputs may be joint
forces and torques, or they may be inputs to the actuators, for example,
voltage inputs to the motors, depending on the model used for controller
design. The commanded motion is typically
specified either as a sequence of end-effector positions and orientations, or
as a continuous path. The command task may regard either the execution of
specified motions for a manipulator operating in free space, or the execution
of specified motions and contact forces for a manipulator whose end-effector
is constrained by the environment.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 25

Fig.15 A link manipulator with the attached base frame, task frame,
and configuration variables

There are many control techniques that can be applied to the control
of manipulators. The fact that task specification is usually carried out in the
operational space, whereas control actions are performed in the joint space
leads to considering two types of general control schemes: configuration
space control and Cartesian (operational) space control.

Fig.16. Standard robot control structure in Cartesian space

The disadvantage of solution shown above is that the operational

space variables are controlled in an open-loop through the manipulator

mechanical structure (open-loop control with respect to the TCP-Tool Center
Point). The conceptual advantage of the closed-loop sian space control
(closed-loop control with respect to the TCP), regards the possibility of

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 26

acting directly on operational space variables. However, it is only a potential
advantage since measurement of operational space variable is often
performed not directly, but through a direct kinematics starting from
measured joint space variables.

Fig. 17. Closed-loop control with respect to tool center point (TCP)

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 27

| 3.Grasping a Book

3.1 The Task

In order to scan a book or to place it in the shelf, it has to be grasped

firstly. It is assumed that the book will lay on the table (or shelf). Due to the
limitation of the gripper, grasping can not be directly implemented on the
table. The book should probably be moved toward the end of the table, and
than grasped. But this has to be further investigated. Available force-torque
sensor should be used for feedback information during the process, which
will improve the robustness.

It can be assumed that the location of the book comes from the

cameras, but other local sensor may also be used (hand camera, tactile skin
etc). Although other researchers will do image-processing part, a close
cooperation is needed.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 28

3.2 The layout of the experiment environment

Fig.18 Table layout

On the table, as shown in the figure above, there are two bars that

define specific action. The book will be move to the first bar where its bar
code will be scanned, and then moved to the second bar where it will be
position for grasping.

To move the manipulator towards the book we need the next sequence

of matrix multiplication:

RTB=RTTb*TbTb1*b1TB

or we can get the direct location of the book using the imagine capturing
system.

x
y

z

x
z

y

x

z

y

x

x

z

y

z
y

Book

Bar 2

Bar 1

Table

RTb2

RTB

RTb1

TbTb1

b1TB

BTb2

RTTb

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 29

 The next motion in the skill is moving the book to Bar1. There are
several solution to get the location of the bar, one of then is:

RTb1=RTTb*TbTb1

When the bar is reached the scanning process will begging, from the
manipulator point of view the book is moved down slowly on the negative
ox.

The last motion is to move the book to Bar2 where is it will set in the
acceptable position for grasping. The location of the bar is obtain as:

RTb2=RTTb*TbTb2

or using the imagine capturing system.

There is one more situation that must be taken into account as shown

in the figure below:

Fig.19 Book alignment

The book is not aligned with the table, which means that there is an
angle θ between the ox axis of the table and the ox axis of the book.
Therefore we need to align the book to the table, which means we need to
rotate the book around the z-axis towards the ox axis of the table with θ:

TbTB’= Rot (z,θ)* TbTB

x

z

y

xT xB

θ

Table

Book

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 30

3.3 The structure of the program

The program is written in C++ using ACE/TAO and COBRA libraries

and is divided in three skills (or subprograms, functions) that are part of a
specific program that deals with the manipulator actions, named
ManipulatorSkillServer.cpp .

As I mention above the task is structured in 3 skills:

• MoveToObjectAndPress
• MoveObjOnPlatform
• MoveBookToGrasp

For testing it was necessary to write a small program, named

Test_GetBook() in ManipulatorSkillServerTesApp.cpp that would call in
chronological order the skills, for the task to be completed. The logical
diagram of the program is shown below:

Start
Test_GetBook()

MoveToObjectAndPress()

MoveObjOnPlatform()

MoveBookToGrasp()

MoveObjectWithContact()

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 31

 The last three function are skills or helper skills that already exist and
can be used.

 3.4 The skills

 In this subchapter we will explain in detailed the main skills of this
task.

 3.4.1 MoveToObjectAndPress()

 The parameters of this skill are:

• pManipulator is the name of the manipulator that will be used
for grasping (here to derive gripper geometry).

• pPlatfLocation is the ID for the target object's location data in

the World Model server.

• pPlatfsize is the ID for the target object's size data in the
WorldModel server. (not yet used)

• pObjLoccation is the ID for the target object's location data in

the WorldModel server.

CloseGripper()

LiftOject()

End
TestGetBook()

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 32

• pObjSize is the ID for the target object's location
data in the WorldModel server. (not yet used)

• pCallBack is the pointer to the proxy of the callback

 object. See above for possible callback messages.

• bSimulative is the flag for the sequencer skill to be
 executed only simulative.

Sends a CM_EXECUTION_SUCCESS, if execution was successful.

If an error occurs CM_EXECUTION_FAILURE.
If SM_STOP_SKILL is sent, the initial condition before skill execution will
be restored and CM_TERMINATION_SUCCESS is sent back. On a
SM_KILL_SKILL a CM_KILL_SUCCESS follows directly with no more
actions.

 The parameters pPlatsize and pObjsize are not used in this program
but they are declared in case of further development of the skill. The
pCallBack is used for transmitting messages incase of failure or success of

the skills; Also using the parameter pSimulative to differentiate between a
skill or a helper skill.

 At the begging of each skill it is mandatory to initialize the servers
(robot-arm sever, force torque sensor, manipulator server, virtual reality
model server), depending of witch you use, through the next section:

// convert hardware server to robot arm hardware server

CManageHardwareServer<HardwareLayer::CRobotarmHardwareServer>::Co
nvert(

 pManipulator,
 m_HardwareServers[pManipulator],
 pRobotarmHardwareServer
);

// manage state of robot arm hardware server

CManageHardwareServer<HardwareLayer::CRobotarmHardwareServer>::ManageSt
ate(pManipulator, pRobotarmHardwareServer);

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 33

 // convert hardware server to FT sensor hardware server

 CManageHardwareServer<HardwareLayer::CFTSensorHardwareServer>::Co
nvert(pFTSensor,
 m_HardwareServers[pFTSensor],
 pFTSensorHardwareServer
);

// manage state of FT sensor hardware server

 CManageHardwareServer<HardwareLayer::CFTSensorHardwareServer>::Ma
nageState(pFTSensor, pFTSensorHardwareServer);

// convert skill server to manipulator skill server
CManageSkillServer<SkillLayer::CManipulatorSkillServer>::Convert
 (SkillServerNames::MANIPULATOR,

m_SkillServers[SkillServerNames::MANIPULATOR],
pManipulatorSkillServer

);

// convert data server to MVR server
 ManageDataServer<SubSymbolicLayer::CMVRServer>::Convert(pManipulator,

m_DataServers[pManipulator],

pMVRServer);

After the initialization of the servers we get the location, meaning

position and orientation of the object (in our case the book) using the next
line, which is then given to a location variable:

TempLocation=ReactiveLayer::CWorldModelExtractorComplexType
<SubSymbolicLayer::CLocation>::GetData(m_WorldModelServer,
pObjLocation);

 Then after setting the orientation of the gripper we create a temporary
location 7 cm above the book, which is then set in the World Model server:

m_WorldModelServer->SetData("PreFrame.EEL.Frame.Temp",
 SubSymbolicData);

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 34

This location is used as a parameter in the instruction
PlanAndMoveGripperToLocation(), instruction that will move the
manipulator to a certain location, which is given as an input parameter.
Other parameters that this instruction has can determine the speed of the
manipulator (normal, slow) or the type of movement (direct line). All of the
above will be exemplify in the instruction below:

 pManipulatorSkillServer->PlanAndMoveGripperToLocation(pManipulator,
 "PreFrame.EEL.Frame.Temp",
 "NormalSlow.EEL.Par.SDB",CallBackHelperProxy);

 For the object, in our case the book, not to be considered an obstacle
we need to set it to approach mode, which is done with this instruction:

 pMVRServer->SetApproach(iLink, pObjectName);

where iLink represents with which link we touch the object, in our case 7
(this depending on the number of links of the robot). And the other
parameter represents the object name.

 To approach the book we use the instruction PlaceOnPlatform(),
which uses the force torque sensor. The motion ends only if one the next two
condition is satisfied, we reach the desired location or a certain threshold of
the pressing force is reached. The threshold is set by this constant:

const double nFORCE_THRESHOLD_WORLD(4); // value in Newton

which is then compared with the real force obtained from the force torque
sensor.

 After calling this helper skill, we wait for its completion and then
reset the approach mode for the book and delete any temporary data from the
World model server that we created. In our case for example:

pMVRServer->ResetApproach();

m_WorldModelServer->DeleteData("PreFrame.EEL.Frame.Temp");

Before we end this skill we deal with the main errors throughout the skill
using the coupled instruction : throw {}….catch{}

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 35

 The logical diagram of this skill is:

3.4.2 MoveObjOnPLatform()

Start skill

Initialize servers

Get location of
object;

Set orientation;

Create preFrame
7 cm above book

Move to preFrame

Move to press

Set approach mode

Stop skill

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 36

The parameters of this skill are:

• pManipulator is the name of the manipulator that will

be used for grasping (here to derive gripper geometry).

• pLocation is the ID for the target object's location
data in the World Model server.

• pCallBack is the pointer to the proxy of the callback

 object. See above for possible callback messages.

• bSimulative is the flag for the sequencer skill to be
 executed only simulative.

Sends a CM_EXECUTION_SUCCESS, if execution was successful.

If an error occurs CM_EXECUTION_FAILURE.

If SM_STOP_SKILL is sent, the initial condition before skill execution will
be restored and CM_TERMINATION_SUCCESS is sent back. On a
SM_KILL_SKILL a CM_KILL_SUCCESS follows directly with no more
actions.

What this skill does is to move the book to the first bar and then move
slowly down, to scan the book bar code.

After we initialize the servers, using the same procedure, we get the

location of the bar. The location of the bar is acquired with the help of the
camera and imagine processing. For the testing par we use a location stored
in the database: "Book1.EEL.Loc.SDB".

Before we move the book to the bar we must take into account that the

book may be not in the correct position. The ‘ox’ and ‘oy’ of the book and
the table are not parallel. This will affect the way we grasp the book.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 37

To solve this we calculate the angle between the ‘ox’ axes of the
book and the table and with the helper skill CartesianDiret Control() we
rotate around the ‘oz’ axes with the angle in world coordinate system. For
this to work we need to create a Cartesian command:

// Create Cartesian command
CartesianCommand.m_iTransX = 0; // +1, 0, or -1
CartesianCommand.m_iTransY = 0;
CartesianCommand.m_iTransZ = 0;
CartesianCommand.m_iRotX = 0;
CartesianCommand.m_iRotY = 0;
CartesianCommand.m_iRotZ = static_cast <long> (sign(angle));
CartesianCommand.m_dTransStep = 0.02;
//CartesianCommand.m_dRotStep = angle;
CartesianCommand.m_dJointSpeed=5;
CartesianCommand.m_bCoordinateSystem = false; //world coordinate system

// Add the data to the WorldModel
SubSymbolicData <<= CartesianCommand;
m_WorldModelServer->SetData("TEMP.CartesianControl.EEL.Cart.Temp",
SubSymbolicData);

// Call the skill
ManipulatorSkillServer>CartesianDirectControl("Robotarm","TEMP.Cartesia
nControl.EEL.Cart.Temp", CallBackHelperProxy);

This idea was tested, but the results were not conclusive. So I
encourage further development or to find another solution to solve the
problem.

 The next step is to move the book to the bar location using for this
case a direct line movement:

pManipulatorSkillServer->PlanAndMoveGripperToLocation(pManipulator,
pLocation,"DirectLine.EEL.Par.SDB", CallBackHelperProxy);

After the location of the bar was reached, we create a temporary

location to witch we move slowly thus scanning the code bar of the book.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 38

The logic diagram of this skill is:

Start skill

Create a temp
location and move to

scan

Rotate around ‘oz’
axe if necessary

Get location of bar

Move to bar

Set book in
approach mode

Reset approach
mode

Stop skill

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 39

3.4.3 MoveBookToGrasp()

 The parameters of this skill are:

• pManipulator is the name of the manipulator that will
 be used for grasping (here to derive gripper geometry).

• pLocation is the ID for the target object's location
 data in the World Model server.

• pObjSize is the ID for the target object's location
 data in the World Model server. (not yet used)

• pCallBack is the pointer to the proxy of the callback
 object. See above for possible callback messages.

• bSimulative is the flag for the sequencer skill to be
 executed only simulative.

Sends a CM_EXECUTION_SUCCESS, if execution was successful.

If an error occurs CM_EXECUTION_FAILURE. If SM_STOP_SKILL is
sent, the initial condition before skill execution will be restored and
CM_TERMINATION_SUCCESS is sent back. On a SM_KILL_SKILL a
CM_KILL_SUCCESS follows directly with no more actions.

The sequence of event is almost the same as in the previous skills.

After the initialization of the servers, we acquire the location of the second
bar.

 Using the same helper skill PlanAndMoveGrippeToLocation() we move
the book towards the edge of the table. Actually the temporary frame is with
-5 cm more on the negative ‘ox’ axe, making the book ready for grasping.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 40

After positioning the book the gripper, using created temporary
frames, away from the book and with the correct orientation for grasping.

 Before the skill is over we cleaned the World Model server of all the
temporary data created and dealt with the major error that may occur using
the throw….catch protective programming.

The logical diagram of this skill is:

Position gripper with
correct orientation for

grasping

Start skill

Create a temp
frame with +(-5)
on neg. ox axis &

move to it

Get location of
bar 2

End skill

Move away from
book

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 41

3.5 MVR picture

Fig. 20 MVR picture of the robot

 In the picture above an MVR model of the robot and the experiment
layout is presented. The motion planning is here, in the MVR, first planned
and tested, and only if the configuration of the robot arm found is
acceptable, then the robot arm moves. An acceptable configuration means
that the point reached is not a singularity, the joints are not at their limits and
no collision is detected.

The reasons why the singularities of a manipulator must be avoided

are listed below:
• Singularities represent configurations at which mobility of the
structure is reduced;
• When the structure is at a singularity, infinite solutions to inverse
kinematics problem may exist;
• In the neighborhood of a singularity, small velocities in the
operational space may cause large velocities in the joint space.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 42

| 4. Conclusion and Future
Work

After completing the experimental phase several conclusions have

been reached. Firstly, the surface of the table should be laminated or have a
slippery surface, as long as it offers less friction. Furthermore, the surface
should be clean. Any debris will attach itself to the book cover, thus
preventing a smooth motion.

Secondly, the book should have a hard cover. During the experiment

we observed that if we grasp a book with a soft cover, the book tends to be
unstable. Also when we press and try to move the book the cover wrinkles
and there is a possibility that it would tear up.

As for future work I recommend further improvements of the library

scenario by adding other actions and the part that deals with the alignment of
the book to the table, so that the axes oy and ox will be parallel.

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 43

REFERENCES

[1] Prof. Dr.-Ing. A. Gräser ,“Robotics I: Lecture notes”, IAT, Summer
semester 2007

[2] D. Ojdanic, O. Ivlev, A. Gräser: "A New Fast Motion Planning
Approach for Dexterous Manipulators in 3D-Cartesian Space"; ISR-
Robotik Joint conference on robotics, May 15-17, Munich, Germany;
2006

[3] www.iat.uni-bremen.de

[4] www.wikipedia.com

[5] www2.iat.uni-bremen.de/~friend2/iatWiki

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 44

APPENDIX A

(programs in ManipulatorSkillServer.cpp)

void CManipulatorSkillServer_impl::MoveToObjectAndPress(const char*
pManipulator,

 const char* pFTSensor,
 const char*
pPlatfLocation,
 const char*
pPlatfSize,
 const char*
pObjLocation,
 const char*
pObjSize,
 CCallBack_ptr
pCallBack,
 CORBA::Boolean
bSimulative
) throw
(CORBA::SystemException)

 {
 CCallBack_impl CallBackHelperServant;
 CCallBack_var CallBackHelperProxy;
 CORBA::Any SubSymbolicData;
 SubSymbolicLayer::CFrame TempPreFrame;
 //SubSymbolicLayer::CFrame TableFrame;
 SubSymbolicLayer::CFrame oFrame;
 SubSymbolicLayer::COrientation GFrame_ori;
 CKMatrix oGripperFrame(4, 4);
 //SubSymbolicLayer::CPosition TempPosition;
 SubSymbolicLayer::CLocation TempLocation;
 //CKMatrix CKTable(4,4);
 CKMatrix CKPreFrame(4,4);
 CKMatrix CKBook(4,4);
 CKMatrix CKGoal(4,4);
 const char* pObjectName;
 std::string
 ErrorMessage;
 std::string TempString;
 long iLink;
 bool bError(false);
 //const double
nMOVE_DOWN_DISTANCE(0.03); // value in meter
 HardwareLayer::CRobotarmHardwareServer_ptr
pRobotarmHardwareServer;
 SkillLayer::CManipulatorSkillServer_ptr
pManipulatorSkillServer;
 HardwareLayer::CFTSensorHardwareServer_ptr
 pFTSensorHardwareServer;
 SubSymbolicLayer::CMVRServer_ptr pMVRServer;

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 45

 //double dAngle;
 //bool
 bForceReached = false;

 LogEvent("Skill MoveToObjectAndPress() started");

 try
 {
 // if true, then execute in simulation mode
 if (bSimulative)
 {
 //SimulateSkill(pManipulator, pCallBack);
 // Can we simulate something useful?
 }
 else
 {
 // EXECUTION
 // --

 // check, if robot world model exists

 // convert hardware server to robot arm hardware server

CManageHardwareServer<HardwareLayer::CRobotarmHardwareServer>::Convert(
pManipulator,

m_HardwareServers[pManipulator],

pRobotarmHardwareServer

);
 // manage state of robot arm hardware server

CManageHardwareServer<HardwareLayer::CRobotarmHardwareServer>::ManageSt
ate(pManipulator, pRobotarmHardwareServer);

 LogEvent("Convertion of pFTSensorHardwareServer
started");

 // convert hardware server to FT sensor hardware server

 CManageHardwareServer<HardwareLayer::CFTSensorHardwareServer>::Co
nvert(pFTSensor,

m_HardwareServers[pFTSensor],

pFTSensorHardwareServer);

LogEvent("Convertion of pFTSensorHardwareServer finished");

// manage state of FT sensor hardware server
 CManageHardwareServer<HardwareLayer::CFTSensorHardwareServer>::Ma
nageState(pFTSensor, pFTSensorHardwareServer);

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 46

// convert skill server to manipulator skill server
CManageSkillServer<SkillLayer::CManipulatorSkillServer>::Convert(SkillS
erverNames::MANIPULATOR,

m_SkillServers[SkillServerNames::MANIPULATOR],

pManipulatorSkillServer

);

 // convert data server to MVR server
 CManageDataServer<SubSymbolicLayer::CMVRServer>::Convert(pManipulator,

m_DataServers[pManipulator],

pMVRServer);

 if (CORBA::is_nil(m_WorldModelServer))
 {
 // throw internal exception
 throw (CM_EXECUTION_FAILURE);

 } // if (CORBA::is_nil(m_pWorldModel))

 //Get location from world model (Book)

TempLocation=ReactiveLayer::CWorldModelExtractorComplexType<SubSymbolic
Layer::CLocation>::GetData(m_WorldModelServer, pObjLocation);

 // create orientation of the gripper
 GFrame_ori.m_dRotationX = 0;
 GFrame_ori.m_dRotationY = 140.0;
 GFrame_ori.m_dRotationZ = 0;

 TempLocation.m_Orientation = GFrame_ori;

 //Conv. location to frame
 TempPreFrame <<= TempLocation;

 // Change z-axis
 TempPreFrame[2][3] = TempPreFrame[2][3] + 0.07;

 //Conv CFrame to CKMatrix
 CKBook <<= TempPreFrame;

 LogEvent("PreFrame.EEL.Frame.Temp: ");
 LogFrame(CKPreFrame);

 LogEvent("CKBook frame: ");
 LogFrame(CKBook);

 // Calc. preframe matrix
 CKPreFrame=CKBook;

 //Conv CKMatrix to Frame
 TempPreFrame<<=CKPreFrame;

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 47

 LogEvent("PreFrame.EEL.Frame.Temp: ");
 LogFrame(CKPreFrame);

 // Add this frame in the WorldModel
 SubSymbolicData <<= TempPreFrame;
 m_WorldModelServer->SetData("PreFrame.EEL.Frame.Temp",
SubSymbolicData);

 // start the helper call back servant
 ActivateServant(CallBackHelperServant,
CallBackHelperProxy);

 // Call helper skill
 pManipulatorSkillServer-
>PlanAndMoveGripperToLocation(pManipulator, "PreFrame.EEL.Frame.Temp",
 "NormalSlow.EEL.Par.SDB",
CallBackHelperProxy);

 WaitForHelperSkill(pCallBack, CallBackHelperServant,
CallBackHelperProxy);

 // Get the name of the object
 TempString = SubSymbolicLayer::GetNameString(pObjSize);
 pObjectName = TempString.c_str();

 // getting the actual numbers of links
 iLink = 7 ;//GetNumberOfLinks();

 // Set ApproachMode() for the platform
 pMVRServer->SetApproach(iLink, pObjectName);

 // start the helper call back servant
 ActivateServant(CallBackHelperServant,
CallBackHelperProxy);

 // Call skill to place an object on platform with FTS
 pManipulatorSkillServer-
>PlaceOnPlatform(pManipulator, pFTSensor, "Book1.EEL.SCub.Temp",
 pObjLocation,
CallBackHelperProxy, false);

 WaitForHelperSkill(pCallBack, CallBackHelperServant,
CallBackHelperProxy);
 //................end movement ..above the
book.........
 // Reset MVR from Approach mode
 pMVRServer->ResetApproach();

 // Delete data used for Frame
 //m_WorldModelServer-
>DeleteData("TEMP.GripperFrame.EEL.Frame.Temp");
 m_WorldModelServer-
>DeleteData("PreFrame.EEL.Frame.Temp");

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 48

 }//else (bSimulative)

 }//try
 catch (const SubSymbolicLayer::CMVRServerError& Error)
 {
 // Create and log error message
 ErrorMessage = "MVR Error: ";
 ErrorMessage.append(Error.m_pErrorMessage);
 LogEvent(ErrorMessage);

 // send callback error message via internal method
 SendCallBack(pCallBack, CM_EXECUTION_FAILURE);

 // set error flag to true
 bError = true;
 }
 catch (const INTERNAL_EXCEPTION_T& Error)
 {
 // log error message
 LogEvent(Error.second);

 // send callback error message via internal method
 SendCallBack(pCallBack, Error.first);

 // set error flag to true
 bError = true;

 } // catch (const INTERNAL_EXCEPTION_T& Error)
 catch (const ReactiveLayer::CWorldModelExchange::CException&
Exception)
 {
 // log error message
 ErrorMessage = "Error in world model exchange in
MoveToObjectAndPress(): ";
 ErrorMessage += Exception.m_eException;
 ErrorMessage += " with ID: ";
 ErrorMessage += Exception.m_ID;
 LogEvent(ErrorMessage, LoggingLayer::ERROR_MSG);

 // throw internal exception
 SendCallBack(pCallBack, CM_EXECUTION_FAILURE);

 } // catch (const
ReactiveLayer::CWorldModelExchange::CException& Exception)

 catch (const HardwareLayer::CFTSensorHardwareError&)
 {
 LogEvent("CFTSensorHardwareError error in
MoveToObjectAndPress()");

 // send callback error message
 SendCallBack(pCallBack, CM_EXECUTION_FAILURE);
 }
 catch (const CORBA::SystemException&)
 {
 // send callback error message

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 49

 SendCallBack(pCallBack, CM_EXECUTION_FAILURE);
 }
 catch (const std::string& cMessage)
 {
 // send callback error message via internal method
 SendCallBack(pCallBack, cMessage);

 // set error flag to true
 bError = true;
 }

 if(!bSimulative)
 {

 // Check, if error occurred.
 if (!bError) {
 // Send "Success" callback message via internal method.
 SendCallBack(pCallBack, CM_EXECUTION_SUCCESS);
 }
 else {
 // Send "Failure" callback message via internal method.
 SendCallBack(pCallBack, CM_EXECUTION_FAILURE);
 }
 }

 LogEvent("Skill MoveToObjectAndPress() terminated");

 } // // void CManipulatorSkillServer_impl::MoveToObjectAndPress(...)

 void CManipulatorSkillServer_impl::MoveObjOnPlatform(const char*
pManipulator,
 const char*
pLocation,
 CCallBack_ptr
pCallBack,
 CORBA::Boolean
bSimulative
) throw
(CORBA::SystemException)
 {
 bool bError(false);
 CCallBack_impl
CallBackHelperServant;
 CCallBack_var
CallBackHelperProxy;
 CORBA::Any
SubSymbolicData;
 SubSymbolicLayer::CFrame
TempPreFrame;
 SubSymbolicLayer::CLocation
TempLocation;
 SubSymbolicLayer::CLocation
TempLocation1;
 //SubSymbolicLayer::COrientation GFrame_ori;

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 50

 CKMatrix
CKBar(4,4);
 CKMatrix CKNxFrame(4,4);
 std::string
ErrorMessage;
 HardwareLayer::CRobotarmHardwareServer_ptr
pRobotarmHardwareServer;
 SkillLayer::CManipulatorSkillServer_ptr
pManipulatorSkillServer;
 SubSymbolicLayer::CMVRServer_ptr pMVRServer;
 const char* pObjectName;
 std::string TempString;
 long iLink;
 double
angle,angle1,angle2;
 SubSymbolicLayer::CCartesianCommand CartesianCommand;
 SubSymbolicLayer::COrientation tmp_ori;

 LogEvent("Skill MoveObjOnPlatform() started");

 try
 {
 // if true, then execute in simulation mode
 if (bSimulative)
 {
 //SimulateSkill(pManipulator, pCallBack);
 // Can we simulate something useful?
 }
 else
 {

 // EXECUTION
 // --

 // ------------ check, if needed servers are avaiable -

 // convert hardware server to robot arm hardware server

CManageHardwareServer<HardwareLayer::CRobotarmHardwareServer>::Convert(
pManipulator,

m_HardwareServers[pManipulator],

pRobotarmHardwareServer

);

 // manage state of robot arm hardware server

CManageHardwareServer<HardwareLayer::CRobotarmHardwareServer>::ManageSt
ate(pManipulator, pRobotarmHardwareServer);

 // convert skill server to manipulator skill server

CManageSkillServer<SkillLayer::CManipulatorSkillServer>::Convert(SkillS
erverNames::MANIPULATOR,

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 51

m_SkillServers[SkillServerNames::MANIPULATOR],

pManipulatorSkillServer

);

 // convert data server to MVR server
 CManageDataServer<SubSymbolicLayer::CMVRServer>::Convert(pManipulator,

m_DataServers[pManipulator],

pMVRServer

);

 // check, if robot world model exists
 if (CORBA::is_nil(m_WorldModelServer))
 {
 // throw internal exception
 throw (CM_EXECUTION_FAILURE);

 } // if (CORBA::is_nil(m_pWorldModel))

 //Get location from world model (Book)
 TempLocation =
ReactiveLayer::CWorldModelExtractorComplexType<SubSymbolicLayer::CLocat
ion>::GetData(m_WorldModelServer, pLocation);

 tmp_ori=TempLocation.m_Orientation;
 angle1=tmp_ori.m_dRotationX;

 // Get the name of the object
 TempString =
SubSymbolicLayer::GetNameString("Book1.EEL.Loc.SDB");
 pObjectName = TempString.c_str();

 // getting the actual numbers of links
 iLink = 7 ;//GetNumberOfLinks();

 // Set ApproachMode() for the platform
 pMVRServer->SetApproach(iLink, pObjectName);

 // Get location of platform (Table)
 TempLocation1 =
ReactiveLayer::CWorldModelExtractorComplexType<SubSymbolicLayer::CLocat
ion>::GetData(m_WorldModelServer, "Platform1.EEL.Loc.SDB");

 tmp_ori=TempLocation1.m_Orientation;
 angle2 =tmp_ori.m_dRotationX;

 angle = angle2 - angle1;

 //angle = TempLocation1.m_Orientation.m_dRotationX -
TempLocation.m_Orientation.m_dRotationX;

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 52

 cout << "The orientation differece is: "<<angle <<
std::endl;

 if (angle !=0)
 {
 if(angle > 90)
 {
 CartesianCommand.m_dRotStep = abs(angle);
 }
 else
 {
 CartesianCommand.m_dRotStep = angle;
 }
 // Create Cartesian command
 CartesianCommand.m_iTransX = 0; // +1, 0,
or -1
 CartesianCommand.m_iTransY = 0;
 CartesianCommand.m_iTransZ = 0;
 CartesianCommand.m_iRotX = 0;
 CartesianCommand.m_iRotY = 0;
 CartesianCommand.m_iRotZ = static_cast
<long> (sign(angle));
 CartesianCommand.m_dTransStep = 0.02;
 //CartesianCommand.m_dRotStep = angle;
 CartesianCommand.m_dJointSpeed = 5;
 CartesianCommand.m_bCoordinateSystem =
false; // world coordinate system

 // Add the data to the WorldModel
 SubSymbolicData <<= CartesianCommand;
 m_WorldModelServer-
>SetData("TEMP.CartesianControl.EEL.Cart.Temp", SubSymbolicData);

 // Start the helper call back servant
 ActivateServant(CallBackHelperServant,
CallBackHelperProxy);

// Call the skill
 pManipulatorSkillServer->
CartesianDirectControl("Robotarm","TEMP.CartesianControl.EEL.Cart.Temp"
, CallBackHelperProxy);

 // Wait on the helper skill
 WaitForHelperSkill(pCallBack, CallBackHelperServant,
CallBackHelperProxy);
 }

 // Start the helper call back servant
 ActivateServant(CallBackHelperServant,
CallBackHelperProxy);

 // Call helper skill
 pManipulatorSkillServer-
>PlanAndMoveGripperToLocation(pManipulator, pLocation,
 "DirectLine.EEL.Par.SDB",
CallBackHelperProxy);

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 53

 // Wait on the helper skill
 WaitForHelperSkill(pCallBack, CallBackHelperServant,
CallBackHelperProxy);

 //Convert loc. to frame
 TempPreFrame <<= TempLocation;

 //Conv CFrame to CKMatrix
 CKBar <<= TempPreFrame;

 LogEvent("CKBar _1_1: ");
 LogFrame(CKBar);

 // Change x-axis
 TempPreFrame[0][3] = TempPreFrame[0][3] - 0.05;
 TempPreFrame[2][3] = TempPreFrame[2][3] + 0.02;

 //Conv CFrame to CKMatrix
 CKNxFrame <<= TempPreFrame;

 LogEvent("CKNxFrame _2_2: ");
 LogFrame(CKNxFrame);

 //Conv. CKMatrix to CFrame
 TempPreFrame<<= CKNxFrame;

 // Add this frame in the WorldModel
 SubSymbolicData <<= TempPreFrame;
 m_WorldModelServer->SetData("PreFrame.EEL.Frame.Temp",
SubSymbolicData);

 // Move to next location
 pManipulatorSkillServer-
>PlanAndMoveGripperToLocation(pManipulator,

"PreFrame.EEL.Frame.Temp","NormalSlow2.EEL.Par.SDB",CallBackHelperProxy
);

 // Wait on the helper skill
 WaitForHelperSkill(pCallBack, CallBackHelperServant,
CallBackHelperProxy);

 }//else (bSimulative)

 // reset approch for the book
 pMVRServer->ResetApproach();

 // Delete data used for Frame
 m_WorldModelServer->
DeleteData("PreFrame.EEL.Frame.Temp");

 }//try

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 54

 catch (const INTERNAL_EXCEPTION_T& Error)
 {
 // log error message
 LogEvent(Error.second);

 // send callback error message via internal method
 SendCallBack(pCallBack, Error.first);

 // set error flag to true
 bError = true;

 } // catch (const INTERNAL_EXCEPTION_T& Error)

 catch (const ReactiveLayer::CWorldModelExchange::CException&
Exception)
 {
 // log error message
 ErrorMessage = "Error in world model exchange in
MoveToObjectAndPress(): ";
 ErrorMessage += Exception.m_eException;
 ErrorMessage += " with ID: ";
 ErrorMessage += Exception.m_ID;
 LogEvent(ErrorMessage, LoggingLayer::ERROR_MSG);

 // throw internal exception
 SendCallBack(pCallBack, CM_EXECUTION_FAILURE);

 } // catch (const
ReactiveLayer::CWorldModelExchange::CException& Exception)

 catch (const std::string& Error)
 {
 LogEvent("Internal exception in MoveObjOnPlatform()");

 // send callback error message via internal method
 SendCallBack(pCallBack, Error);

 // set error flag to true
 bError = true;

 } // catch (const SkillError& Error)

 // check, if error occurred
 if (!bError)
 {
 // send success callback message via internal method
 SendCallBack(pCallBack, CM_EXECUTION_SUCCESS);
 }

 LogEvent("Skill MoveObjOnPlatform() terminated");

 }//void CManipulatorSkillServer_impl::MoveObjOnPlatform()

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 55

 void CManipulatorSkillServer_impl::MoveBookToGrasp(const char*
pManipulator,
 const char*
pLocation,
 const char*
pObjSize,
 CCallBack_ptr
pCallBack,
 CORBA::Boolean
bSimulative
) throw
(CORBA::SystemException)
 {
 bool bError(false);
 CCallBack_impl CallBackHelperServant;
 CCallBack_var CallBackHelperProxy;
 CORBA::Any SubSymbolicData;
 SubSymbolicLayer::CFrame TempPreFrame;
 SubSymbolicLayer::CLocation TempLocation;
 //SubSymbolicLayer::CLocation RLoc1 ;
 //SubSymbolicLayer::CLocation RLoc2 ;
 //SubSymbolicLayer::CLocation RLoc3 ;
 //SubSymbolicLayer::CPosition tmp_pos;
 //SubSymbolicLayer::COrientation tmp_ori;
 SubSymbolicLayer::COrientation G_ori;
 //CKMatrix CKRotx(4,4);
 //CKMatrix CKRoty(4,4);
 //CKMatrix CKRotz(4,4);
 CKMatrix CKFrame1(4,4);
 std::string
 ErrorMessage;
 //std::string TempString;
 const ACE_Time_Value oCHECK_CALLBACK_CYCLE(0, 100
* 1000); //100ms
 HardwareLayer::CRobotarmHardwareServer_ptr
pRobotarmHardwareServer;
 SkillLayer::CManipulatorSkillServer_ptr
pManipulatorSkillServer;
 SubSymbolicLayer::CMVRServer_ptr pMVRServer;
 const char* pObjectName;
 std::string TempString;
 long iLink;

 LogEvent("Skill MoveBookToGrasp() started");

 try
 {
 // if true, then execute in simulation mode
 if (bSimulative)
 {
 SimulateSkill(pManipulator, pCallBack);
 // Can we simulate something useful?
 }
 else
 {
 // EXECUTION

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 56

 // --

 // ------------ check, if needed servers are available ------

 // convert hardware server to robot arm hardware server

CManageHardwareServer<HardwareLayer::CRobotarmHardwareServer>::Convert(
pManipulator,
m_HardwareServers[pManipulator],
pRobotarmHardwareServer);

 // manage state of robot arm hardware server
CManageHardwareServer<HardwareLayer::CRobotarmHardwareServer>::ManageSt
ate(pManipulator, pRobotarmHardwareServer);

 // convert skill server to manipulator skill server
CManageSkillServer<SkillLayer::CManipulatorSkillServer>::Convert(SkillS
erverNames::MANIPULATOR,
m_SkillServers[SkillServerNames::MANIPULATOR],
pManipulatorSkillServer);

 // convert data server to MVR server
CManageDataServer<SubSymbolicLayer::CMVRServer>::Convert(pManipulator,
m_DataServers[pManipulator],
pMVRServer);
 // check, if robot world model exists
 if (CORBA::is_nil(m_WorldModelServer))
 {
 // throw internal exception
 throw (CM_EXECUTION_FAILURE);

 } // if (CORBA::is_nil(m_pWorldModel))

 // Get the name of the object
 TempString =
SubSymbolicLayer::GetNameString("Book1.EEL.Loc.SDB");
 pObjectName = TempString.c_str();

 // getting the actual numbers of links
 iLink = 7 ;//GetNumberOfLinks();

 // Set ApproachMode() for the platform
 pMVRServer->SetApproach(iLink, pObjectName);

 //Get location from world model (Bar2)
TempLocation=ReactiveLayer::CWorldModelExtractorComplexType<SubSymbolic
Layer::CLocation>::GetData(m_WorldModelServer, pLocation);

 //give orientation
 G_ori.m_dRotationX = 0;
 G_ori.m_dRotationY = 140.0;
 G_ori.m_dRotationZ = 0;

 TempLocation.m_Orientation = G_ori;

 //Convert loc. to frame

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 57

 TempPreFrame <<= TempLocation;

 // Change x-axis
 TempPreFrame[0][3] = TempPreFrame[0][3] - 0.06;
 TempPreFrame[2][3] = TempPreFrame[2][3] + 0.012;

 //Conv CFrame to CKMatrix
 CKFrame1 <<= TempPreFrame;

 //Conv. CKMatrix to CFrame
 TempPreFrame<<=CKFrame1;

 // Add this frame in the WorldModel
 SubSymbolicData <<= TempPreFrame;
 m_WorldModelServer->SetData("PreFrame.EEL.Frame.Temp",
SubSymbolicData);

 // Start the helper call back servant
 ActivateServant(CallBackHelperServant,
CallBackHelperProxy);

 // Call helper skill
 pManipulatorSkillServer-
>PlanAndMoveGripperToLocation(pManipulator, "PreFrame.EEL.Frame.Temp",
 "Directline.EEL.Par.SDB",
CallBackHelperProxy);

 // Wait on the helper skill
 WaitForHelperSkill(pCallBack, CallBackHelperServant,
CallBackHelperProxy);

 LogEvent("!!!!!move to bar 2 succes!!!!1 ");

 //1

 //give orientation
 G_ori.m_dRotationX = 0;
 G_ori.m_dRotationY = 140.0;
 G_ori.m_dRotationZ = 0;

 TempLocation.m_Orientation = G_ori;

 //Convert loc. to frame
 TempPreFrame <<= TempLocation;

 // Change z-axis(move gripper above the book)--bar
coord
 TempPreFrame[0][3] = TempPreFrame[0][3] - 0.17;
 TempPreFrame[2][3] = TempPreFrame[2][3] + 0.14;

 //Conv CFrame to CKMatrix
 CKFrame1 <<= TempPreFrame;

 //Conv. CKMatrix to CFrame
 TempPreFrame<<=CKFrame1;

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 58

 // Add this frame in the WorldModel
 SubSymbolicData <<= TempPreFrame;
 m_WorldModelServer->SetData("PreFrame1.EEL.Frame.Temp",
SubSymbolicData);

 // Call helper skill
 pManipulatorSkillServer-
>PlanAndMoveGripperToLocation(pManipulator, "PreFrame1.EEL.Frame.Temp",
 "NormalSlow.EEL.Par.SDB",
CallBackHelperProxy);

 // Wait on the helper skill
 WaitForHelperSkill(pCallBack, CallBackHelperServant,
CallBackHelperProxy);

 LogEvent("!!!!move up succes!!!!1 ");

 // reset approch for the book
 pMVRServer->ResetApproach();

 //3

 /*
 tmp_pos.m_dPositionX = 0;
 tmp_pos.m_dPositionY = 0;
 tmp_pos.m_dPositionZ = 0;

 tmp_ori.m_dRotationX = -20;
 tmp_ori.m_dRotationY = 0;
 tmp_ori.m_dRotationZ = 0;

 RLoc1.m_Position = tmp_pos;
 RLoc1.m_Orientation = tmp_ori;

 //Convert loc. to frame
 TempPreFrame <<= RLoc1;

 //Conv CFrame to CKMatrix
 CKRotx <<= TempPreFrame;

 LogEvent("!!!! CKRotx _!!!: ");
 LogFrame(CKRotx);

 tmp_pos.m_dPositionX = 0;
 tmp_pos.m_dPositionY = 0;
 tmp_pos.m_dPositionZ = 0;

 tmp_ori.m_dRotationX =0 ;
 tmp_ori.m_dRotationY =-10;
 tmp_ori.m_dRotationZ = 0;

 RLoc2.m_Position = tmp_pos;
 RLoc2.m_Orientation = tmp_ori;

 //Convert loc. to frame
 TempPreFrame <<= RLoc2;

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 59

 //Conv CFrame to CKMatrix
 CKRoty <<= TempPreFrame;

 tmp_pos.m_dPositionX = 0;
 tmp_pos.m_dPositionY = 0;
 tmp_pos.m_dPositionZ = 0;

 tmp_ori.m_dRotationX =0 ;
 tmp_ori.m_dRotationY =0;
 tmp_ori.m_dRotationZ =-20;

 RLoc3.m_Position = tmp_pos;
 RLoc3.m_Orientation = tmp_ori;

 //Convert loc. to frame
 TempPreFrame <<= RLoc3;

 //Conv CFrame to CKMatrix
 CKRotz <<= TempPreFrame;
 */

 //give orientation
 G_ori.m_dRotationX = -40;
 G_ori.m_dRotationY = 120.0;
 G_ori.m_dRotationZ = -40;

 TempLocation.m_Orientation = G_ori;

 //Convert loc. to frame
 TempPreFrame <<= TempLocation;

 /*
 // Get actual GripperFrame
 // SubSymbolicLayer::CFrame GFrame;
 TempPreFrame= GetGripperFrame(pManipulator,
 oCHECK_CALLBACK_CYCLE);

 // Convert CFrame into CKMatrix.
 CKMatrix oGripperFrame(4, 4);
 oGripperFrame <<= TempPreFrame;

 LogEvent("!!!! TempPreFrame _1_1: ");
 LogFrame(oGripperFrame);
 */

 // Change x-axis(move gripper to a help point --
down)--bar coord
 //TempPreFrame <<= TempLocation;
 TempPreFrame[0][3] = TempPreFrame[0][3] - 0.23;
 TempPreFrame[2][3] = TempPreFrame[2][3] - 0.07;

 //Conv CFrame to CKMatrix
 CKFrame1 <<= TempPreFrame;

 LogEvent("!!!! CKFrame1 !! _2_2: ");

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 60

 LogFrame(CKFrame1);

 // matrix position for grasping
 // CKFrame1= CKFrame1*CKRotx*CKRoty*CKRotz;

 LogEvent("!!!! CKFrame1 final !! _3_3: ");
 LogFrame(CKFrame1);

 //Conv. CKMatrix to CFrame
 TempPreFrame<<=CKFrame1;

 // Add this frame in the WorldModel
 SubSymbolicData <<= TempPreFrame;
 m_WorldModelServer->SetData("PreFrame2.EEL.Frame.Temp",
SubSymbolicData);

 // Call helper skill
 pManipulatorSkillServer-
>PlanAndMoveGripperToLocation(pManipulator, "PreFrame2.EEL.Frame.Temp",
 "NormalSlow.EEL.Par.SDB",
CallBackHelperProxy);

 // Wait on the helper skill
 WaitForHelperSkill(pCallBack, CallBackHelperServant,
CallBackHelperProxy);

 }//else (bSimulative)

 // Delete data used for Frame
 m_WorldModelServer->
DeleteData("PreFrame.EEL.Frame.Temp");
 m_WorldModelServer->
DeleteData("PreFrame1.EEL.Frame.Temp");
 m_WorldModelServer->
DeleteData("PreFrame2.EEL.Frame.Temp");

 // reset approch for the book
 //pMVRServer->ResetApproach();

 }//try

 catch (const INTERNAL_EXCEPTION_T& Error)
 {
 // log error message
 LogEvent(Error.second);

 // send callback error message via internal method
 SendCallBack(pCallBack, Error.first);

 // set error flag to true
 bError = true;

 } // catch (const INTERNAL_EXCEPTION_T& Error)

 catch (const
ReactiveLayer::CWorldModelExchange::CException& Exception)

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 61

 {
 // log error message
 ErrorMessage = "Error in world model exchange in
MoveToObjectAndPress(): ";
 ErrorMessage += Exception.m_eException;
 ErrorMessage += " with ID: ";
 ErrorMessage += Exception.m_ID;
 LogEvent(ErrorMessage, LoggingLayer::ERROR_MSG);

 // throw internal exception
 SendCallBack(pCallBack, CM_EXECUTION_FAILURE);

 } // catch (const
ReactiveLayer::CWorldModelExchange::CException& Exception)

 catch (const std::string& Error)
 {
 LogEvent("Internal exception in MoveBookToGrasp()");

 // send callback error message via internal method
 SendCallBack(pCallBack, Error);

 // set error flag to true
 bError = true;

 } // catch (const SkillError& Error)

 // check, if error occurred
 if (!bError)
 {
 // send success callback message via internal method
 SendCallBack(pCallBack, CM_EXECUTION_SUCCESS);

 }

 LogEvent("Skill MoveBookToGrasp() terminated");

 }//void CManipulatorSkillServer_impl::MoveBookToGrasp()

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 62

APPENDIX B

(program in ManipulatorSkillServerTestApp.cpp)

void TestGetBook()

{
 CORBA::Any SymbolicData;
 CORBA::String_var CallBackMessage;
 SubSymbolicLayer::CLocation TableLocation;
 SubSymbolicLayer::CSizeCuboid TableSize;
 SubSymbolicLayer::CLocation BookLocation;
 SubSymbolicLayer::CSizeCuboid BookSize;
 const ACE_Time_Value oCHECK_CALLBACK_CYCLE(0, 100 *
1000); //100ms
 long iLink;

 std::cout << "TestGetBook() started" << std::endl;

 // Location and size of the table and book into WorldModel
 //..

 // Goal orientation
 TableLocation.m_Orientation.m_dRotationX = 0;
 TableLocation.m_Orientation.m_dRotationY = 0;
 TableLocation.m_Orientation.m_dRotationZ = 0;

 TableLocation.m_Position.m_dPositionX = 0.6;
 TableLocation.m_Position.m_dPositionY = -0.30;
 TableLocation.m_Position.m_dPositionZ = -0.67;

 SymbolicData <<= TableLocation;
 WorldModel->SetData("Table.EEL.Loc.Temp", SymbolicData);

 // The size will allways be the same
 TableSize.m_dHeight = 0.5;
 TableSize.m_dDeepth = 0.70;
 TableSize.m_dWidth = 0.80;

 SymbolicData <<= TableSize;
 WorldModel->SetData("Table.EEL.SCub.Temp", SymbolicData);

 //...

 // Goal orientation
 BookLocation.m_Orientation.m_dRotationX = 0;
 BookLocation.m_Orientation.m_dRotationY = 0;
 BookLocation.m_Orientation.m_dRotationZ = 0;

 BookLocation.m_Position.m_dPositionX = 0.6;
 BookLocation.m_Position.m_dPositionY = -0.45;
 BookLocation.m_Position.m_dPositionZ = -0.40;

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 63

 SymbolicData <<= BookLocation;
 WorldModel->SetData("Book1.EEL.Loc.Temp", SymbolicData);

 // The size will allways be the same
 BookSize.m_dHeight = 0.02;
 BookSize.m_dDeepth = 0.2;
 BookSize.m_dWidth = 0.15;

 SymbolicData <<= BookSize;
 WorldModel->SetData("Book1.EEL.SCub.Temp", SymbolicData);

 // Call skill CalculateDynamicObstacles()
 // Call the skill
 ManipulatorSkillServer->CalculateDynamicObstacles("Robotarm",
CallBackProxy, false);

 // Wait for the termination
 while (!CallBackProxy->IsCallBackUpdated())
 {
 ACE_OS::sleep(ACE_Time_Value(0, 100000));
 }

 // get call back helper message
 CallBackProxy->GetCallBackValue(CallBackMessage);

 cout << CallBackMessage << endl;

 std::cout << "Test_CalculateDynamicObstacles() finished" <<
std::endl;

 // Call the skill
 ManipulatorSkillServer->MoveToObjectAndPress("Robotarm",
"FTSensor","Platform1.EEL.Loc.SDB","sdd",

 "Book1.EEL.Loc.SDB","Book1.EEL.SCub.Temp", CallBackProxy, false);

 // Wait for the termination
 while (!CallBackProxy->IsCallBackUpdated())
 {
 ACE_OS::sleep(ACE_Time_Value(0, 100000));
 }

 // get call back helper message
 CallBackProxy->GetCallBackValue(CallBackMessage);

 cout << "MoveToObjectAndPress() finished" << CallBackMessage <<
endl;

 if (CallBackMessage == SkillLayer::CM_EXECUTION_FAILURE)
 {
 cout << "TestGetBook finished" << std::endl;
 return;
 }

Babau Mircea Alexandru
Project Grasping a Book from the Table with a 7DOF Manipulator

 64

// Call the skill
 ManipulatorSkillServer-
>MoveObjOnPlatform("Robotarm","Bar1.EEL.Loc.SDB", CallBackProxy,
false);

 // Wait for the termination
 while (!CallBackProxy->IsCallBackUpdated())
 {
 ACE_OS::sleep(ACE_Time_Value(0, 100000));
 }

 // get call back helper message
 CallBackProxy->GetCallBackValue(CallBackMessage);

 cout << "MoveObjOnPlatform(): " << CallBackMessage << endl;

 if (CallBackMessage == SkillLayer::CM_EXECUTION_FAILURE)
 {
 cout << "TestGetBook finished" << std::endl;
 return;
 }

// Call the skill
 ManipulatorSkillServer-
>MoveBookToGrasp("Robotarm","Bar2.EEL.Loc.SDB","gfgf", CallBackProxy,
false);

 // Wait for the termination
 while (!CallBackProxy->IsCallBackUpdated())
 {
 ACE_OS::sleep(ACE_Time_Value(0, 100000));
 }

 // get call back helper message
 CallBackProxy->GetCallBackValue(CallBackMessage);

 cout << "MoveBookToGrasp(): " << CallBackMessage << endl;

 if (CallBackMessage == SkillLayer::CM_EXECUTION_FAILURE)
 {
 cout << "TestGetBook finished" << std::endl;
 return;

 }

}// TestGetBook()

