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Chapter 1 
 

Introduction 
Summary 
    

1.1. Introduction 
1.2. Definition of the research question 
1.3. Methodology 
1.4. Structure of the paper 

 
 
1.1. Introduction 
 

The hedge fund universe consists of a great variety of completely different 
investment and trading strategies. Despite having some common features (e.g. an 
unregulated organizational structure, flexible investment strategies, sophisticated 
investors, etc.), hedge funds remain an extremely diverse asset class. A consistent 
classification system is important for numerous reasons – it will help improve 
investment-choices of market participants, and funds of funds will refer to it in the 
construction of their portfolio to avoid undiversified exposures. A grouping of funds 
based on return characteristics can furthermore help evaluate the discriminatory power of 
different styles. In this context, a consistent classification system contributes to an 
improved performance attribution. 
 
 
1.2. Definition of the research question 
 

The purpose of this paper is to shed some light on the stylistic differences across 
hedge funds by analysing their evolution using the filtering approach (in order to 
eliminate the noise existent in the different hedge fund series), and to try to find a 
structure in this collection of unlabeled data (clustering). The great variety of hedge 
funds, as well as their non-linear manifestation during time poses both a challenge and an 
opportunity to their analysis. The challenge is comprehending and bench marking 
managers whose operations are essentially opaque, whose instruments vary widely, and 
who in many cases eschew predictable passive factor exposures. The opportunity lies in 
the diversification that the varieties of hedge funds present.  

We ask a few simple questions.  
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• First, in light of the extraordinary variety of hedge fund strategies, are there a few 
basic styles that they pursue?  

 

• Second, are these styles meaningful to investors – that is, do they explain 
differences in performance?  

 

• Third, are there any significant trends in these styles that investors and analysts 
should know about?  

 
The research question is therefore: “Can filtering analysis help to better define the 

different strategies of hedge funds, to distinguish some basic styles and rules in their 
evolution in time and to classify them with a unified approach?” The following sub 
questions, defining the research problem, should be articulated. 
 

• First, how and what type of filtering-analysis should be chosen, in order to give an 
appropriate solution in estimating the hidden hedge funds time-series state in a 
way that minimizes the error? Here the specificity of the hedge funds time series 
must be taken into account.  

 
• Second, what type of clustering-method should be chosen, in order to better 

distinguish and classify the different hedge funds evolutions in time, based on the 
existent measurements (the TASS an HFR hedge funds databases are used during 
the experiments)?  

 
• Third, can an alternative, filter-based model and an appropriate clustering method 

be formulated for hedge funds time evolution estimation and prediction and does 
this model perform well compared to existing competing models? 

 
• Fourth, can wavelet-analysis decompose the hedge funds returns time-series into 

multiple levels, such that each level captures specific useful information? Can this 
analysis help to tailor risk by finding an appropriate resolution for each time 
horizon, through use of a multi-level decomposition? The answer to this question 
will remain as a future research. 

 
1.3. Methodology 
 

In order to operationalize the research problem, I took the following steps. As a 
first step I consulted the available literature on hedge funds – their characteristics, 
benefits, risks and the available strategies – in order to understand the general idea and its 
role in finance and economics.  

 
As a second step I made an overview of the most commonly available literature 

for the problem of estimating the hidden states of a system in an optimal and consistent 
fashion, given a set of noisy or incomplete observations (the case of hedge funds returns 
time-series). I found that the optimal solution to this problem is given by the recursive 
Bayesian estimation algorithm which recursively updates the posterior density of the 
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system state. I dove into the Gaussian Approximate Bayesian Estimation theory to 
understand the mathematics behind it. I started my study with the simple Kalman Filter. 
In order to acquire intuition for the theory, I worked out numerical examples, first with 
simple models, later on with more complex ones. During my experiments I found that, 
unfortunately for most real-world problems, the optimal Bayesian recursion is intractable 
and approximate solutions must be used. The most simple of this category is the 
Extended Kalman filter (EKF). Unfortunately, the EKF is based on a sub-optimal 
implementation of the recursive Bayesian estimation framework applied to Gaussian 
random variables. This can seriously affect the accuracy or even lead to divergence of 
any inference system that is based on the EKF or that uses the EKF as a component part. 
So, I continued my research in the literature, to find a better solution, in parallel with 
working out numerical examples. Great benefits for our non-linear estimation problem 
can be obtained by algorithmic alternatives to the EKF, based on derivativeless statistical 
linearization, called Sigma-Point Kalman Filters which are deeply explained in Chapter 3. 

  
The third step was to make an overview and comparison of the available software 

for the Gaussian Approximate Bayesian Estimation – Kalman Filter Framework. Using 
this overview, I chose an appropriate software package in order to acquire intuition for 
the theory and to conduct experiments. The software package used is the ReBEL toolkit, 
which is a Matlab toolbox designed to facilitate the sequential estimation in general state 
space models. ReBEL is developed and maintained by Rudolph van der Merwe. 
 

As a fourth step I continued my study with another category of filters, the Particle 
filters. Instead of a Gaussian approximation of the aposteriori state, they use Markov-
Chain Monte-Carlo simulations and are therefore also used in the case of Non-Gaussian 
noises. The time evolution of hedge funds return is a non-linear time series, usually 
affected by non-gaussian noise, so a suitable approach was needed. Whereas the standard 
EKF and the sigma-point filters, discussed above, make a Gaussian assumption to 
simplify the optimal recursive Bayesian estimation, particle filters make no assumptions 
on the form of the probability densities in question, that is full nonlinear, non-Gaussian 
estimation. I studied the mathematics and the behaviour of these filters; then I searched 
an appropriate software package in order to acquire intuition for the theory and to 
conduct experiments. 
 
 As a fifth step, in order to fulfil my research I made an overview of the most 
commonly available wavelet literature and dove into wavelet theory to understand the 
mathematics behind it. Wavelet transformation is a powerful signal processing tool that is 
well suited to process non-linear and non-stationary dynamical processes. Due to the joint 
time-frequency nature of the wavelets, wavelet analysis is able to yield features that 
describe properties of a time series, both at various locations and at varying time 
granularities. 
 

As a sixth step I consulted the available literature on clustering methods – their 
characteristics, requirements and the available algorithms – in order to understand the 
general idea and their role and use in finance and economics. A cluster is a collection of 
objects which are “similar” between them and are “dissimilar” to the objects belonging to 
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other clusters. By using clustering procedures, we are able to identify and separate the 
hedge funds returns time-series into different groups based on similarities found in both 
the underlying trends and the localized transient patterns of these time series. An accurate 
clustering analysis, together with the good choice of attributes can bring some light of the 
extraordinary variety of hedge fund strategies.  

 
The seventh step was to make an overview and comparison of the available 

software for the K-means, fuzzy C-means clustering algorithms. Using this overview, I 
chose an appropriate software package in order to acquire intuition for the theory and to 
conduct experiments. The software package used is the Fuzzy Clustering and Data 
Analysis Toolbox, which is a collection of Matlab functions. Its purpose is to divide a 
given data set into subsets, under different initial assumptions.  

 
The eighth step was to conduct simulations and experiments with the proposed 

models on artificially generated data and real-life data from the TASS and HFR hedge 
fund databases. I studied the results and checked whether the models gave an accurate 
estimation of the non-linear and non-stationary dynamical processes of hedge funds 
returns time-series. The simulations were divided in two categories: simple clustering 
(testing different methods and obtaining the optimal number of clusters) and filtering 
(testing the different algorithms presented in the theory). The filtering + clustering 
approach (in order to analyse how the filtering affects the data, if this process affects the 
initial clusters and if it diminishes the error) will be treated in a future work. Each 
simulation and validity test is repeated a significant number of times in order to get a 
reliable notion of the performance. 
 

As a final step I compared the results obtained from the simulations, in order to 
make a classification, and to propose a different way of analysing the hedge fund returns 
time-series, using the filtering and clustering approach.  
 

The writing of the final thesis was a recurrent process. It entailed the performing 
of a literature study to gain a general understanding, experimenting with the theory to get 
intuition for the theory and reporting the results. This process was for me the logical 
order to structure this complex problem into smaller solvable problems. 
 
 
1.4. Structure of the paper 
 
To support the methodology as presented, this paper is structured as follows and is shown 
in the next figure: Chapter 1, this chapter, is the introduction. Chapter 2 explains the 
characteristics and strategies of the hedge funds and the various studies existent in the 
literature. In chapter 3 the approximate Bayesian estimation theory is systematically 
investigated. Following the simplest case, the celebrated Kalman filter is briefly derived, 
followed by the discussion of optimal nonlinear filtering. Chapter 4 discusses a popular 
numerical approximation technique - Monte Carlo approximation and sequential 
sampling method - which results in various forms of particle filters. Chapter 5 explained 
the fundamentals of wavelet analysis and the basis for time-scale decomposition. In 
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chapter 6 the cluster analysis techniques are presented; here were given different methods 
of clustering, which will be used in Chapter 7 during the experiments, in order to 
compare, group and find structures in the various models for the hedge funds returns. 
Chapter 7 sets up experiments, first using artificially generated data and then real-life 
continuously compounded returns obtained from the TASS and HFR databases. Chapter 
8 concludes this paper. Chapter 9 is the bibliography. Chapter 10 corresponds to the 
appendix. 
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Chapter 2 
 

Hedge funds 
Summary 
    

2.1. Definition 
2.2. Characteristics, benefits and risks 
2.3. Strategies 
2.4. Hedge Fund Database Providers and Classification 
2.5. Alternative Classification Requirement 
2.6. Literature review 
 2.6.1. Performance attribution (modelling returns) 
 2.6.2. Performance evaluation 

2.6.3. Characteristics and impact on financial market 
2.6.4. Other studies 
2.6.5. Traditional beta, alternative betas and alpha 
 
     

2.1. Definition 
 

In financial terminology, the meaning of hedge is protecting oneself against 
unfavourable changes in prices. The hedge funds have known a powerful growth in 
recent years, and became more and more popular. This is due to their ability to 
outperform the overall market through individual stock and security selection and by 
taking market neutral positions in order to protect financial capital in times of market 
volatility.  

The term hedge fund dates back to the first such fund founded by Alfred Winslow 
Jones in 1949. His innovation consisted in combining a leveraged long stock position 
with a portfolio of short stocks in an investment fund, thus some of the market risk was 
hedged. Many hedge fund characteristics have changed since then, but also many 
important features have remained the same. Nowadays the hedge funds are spread in 
many places around the world, not only in the U.S.   

The hedge fund universe consists of a great variety of completely different 
investment and trading strategies. Despite having some common features (like flexible 
investment strategies, sophisticated investors, unregulated organizational structure), 
hedge funds remain an extremely diverse asset class (Ackermann, 1999), so it is difficult 
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to give them a unique definition. However, I tried to synthesize here what a hedge fund 
represents and its main characteristics: 

A hedge fund is usually used by wealthy individuals and institutions, which is 
allowed to use aggressive strategies that are unavailable to mutual funds, including 
selling short, leverage (borrowing), program trading, swaps, arbitrage, and derivatives. It 
that can take both long and short positions, buy and sell undervalued securities, trade 
options or bonds, and invest in almost any opportunity in any market where it foresees 
gains at reduced risk. The primary aim of most hedge funds is to reduce volatility and 
risk while attempting to preserve capital and deliver positive returns under all market 
conditions.  

Success is measured by tracking the “absolute return" of a fund, which means 
that the return is not related to the overall direction of any particular investment market. 
So, unlike conventional share market funds, for example, hedge funds can profit 
irrespective of the overall market direction. 

 

2.2. Characteristics, benefits and risks 

 

Hedge funds are exempt from many of the rules and regulations governing other 
mutual funds, which allow them to accomplish aggressive investing goals. Legally, hedge 
funds are most often set up as private investment partnerships that are open to a limited 
number of investors (no more than 100 investors per fund) and require a very large initial 
minimum investment (ranging anywhere from $250,000 to over $1 million). Investments 
in hedge funds are illiquid as they often require investors keep their money in the fund for 
a minimum period of at least one year.  

Other characterististics of hedge funds are presented above: 
 

• Hedge funds utilize a variety of financial instruments to reduce risk, enhance 
returns and minimize the correlation with equity and bond markets. Many hedge 
funds are flexible in their investment options (can use short selling, leverage, 
derivatives such as puts, calls, options, futures, etc.).  

• Hedge funds vary enormously in terms of investment returns, volatility and risk. 
Many, but not all, hedge fund strategies tend to hedge against downturns in the 
markets being traded.  

• Many hedge funds have the ability to deliver non-market correlated returns.  
• Many hedge funds have as an objective consistency of returns and capital 

preservation rather than magnitude of returns.  
• Most hedge funds are managed by experienced investment professionals who are 

generally disciplined and diligent.  
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• Pension funds, insurance companies, private banks and high net worth individuals 
and families invest in hedge funds to minimize overall portfolio volatility and 
enhance returns.  

• Most hedge fund managers are highly specialized and trade only within their area 
of expertise and competitive advantage.  

• Hedge funds benefit by heavily weighting hedge fund managers’ remuneration 
towards performance incentives, thus attracting the best brains in the investment 
business. In addition, hedge fund managers usually have their own money 
invested in their fund.  

The growing evolution of the number of hedge funds between 1949 - 2004 is presented in 
Fig.1.  

 
Fig.1: Number of hedge funds (1949 – 2004) 

 

Benefits  

• Many hedge fund strategies have the ability to generate positive returns in both 
rising and falling equity and bond markets.   

• The inclusion of hedge funds in a balanced portfolio reduces overall portfolio risk 
and volatility whilst increasing returns and diversification.  

• The huge variety of hedge fund investment styles – many uncorrelated with each 
other – provides investors with a wide choice of hedge fund strategies to meet 
their stated investment objectives.   

• Academic research suggests hedge funds have higher returns and lower overall 
risk than traditional investment funds.    

• Hedge funds provide an ideal long-term investment solution, eliminating the need 
to correctly time entry and exit from markets. 
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• Adding hedge funds to an investment portfolio provides diversification not 
otherwise available in traditional investing. 

 
 
 

Risk in hedge funds 

Hedge funds make uncorrelated returns because they take different risks. 
Analyzing their risks is not just a good idea; it is the beginning of any investment 
operation.  

The following is a list (not an exhaustive one) of risks categories specific to hedge 
funds:  

• Lack of transparency. Hedge funds are businesses, and as such, they often choose not 
to disclose their most precious asset: their strategy. It is typically impossible to get a 
hedge fund to report the positions it holds in its investment portfolio. However, they 
do offer a subscription document or offering memorandum, which is a legal document 
that binds the manager to a certain set of activities, and therefore the manager has 
limits to what she can do. Audited financial statements are typically available, and 
they should be consulted prior to any investment.  

• Fraud. We mentioned above that the manger is bound to limit their activity to certain 
legitimate activities. Fraud will occur when they don’t. Fraud can also occur when 
they misquote performance or valuations.  

• Counterparty risk. Although not specific to hedge funds, they are especially sensitive 
to this risk type because of the unregulated and specialized nature of their 
transactions. Counterparty risk (or credit risk) refers to losses that the fund can incur 
into when the counterparty to some of its financial transactions does not honour their 
obligations (default). This term also refers to situations when, without default or 
bank-ruptcy, the counterparty undergoes a credit downgrade, hence affecting the 
market value of the securities in the fund.  

• Portfolio liquidity and redemption orders. Hedge funds often restrict fund 
redemptions to quarterly terms (or more), and usually with some advance notice. 
Liquidation orders, therefore, can take time to process. Moreover, funds can choose to 
suspend redemption orders when they estimate that liquidation would be detrimental 
to the remaining investors in the fund: a hedge fund forced to sell securities to meet 
redemption orders is an easy prey to its counterparties or competitors in the financial 
markets.  

• Capacity risk. Hedge funds make money on fees; while management fees are 
considered generous by investment standards (1% or more), it is with the performance 
fees that most funds make their money. Hence, they are encouraged to close the fund 
to new investments if they see no new opportunities for return and sense that they 
have reached capacity. Those who don’t limit their fund-raising activity may raise 
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assets beyond their natural capacity, which may lead to a decrease in their future 
returns.  

• Style drift. Individual hedge funds are normally selected to be part of an investment 
portfolio for a good reason, which is usually the particular trading style they employ; 
when a fund changes its style and adopts another one, it may create imbalances inside 
the portfolio; if sufficiently many funds undergo style drift over a period of time, the 
risk pattern of the portfolio can be changed drastically and give rise to unintended risk 
concentration.  

• Data. Imagine a hedge fund that trades between New York and Tokyo. When it 
calculates the daily value of the assets, does it use NY closing time of 4 pm EST? Or 
Tokyo closing time? Or does it use NY close for some positions and Tokyo for 
others? Questions as simple as this (and of course much more complex) can introduce 
huge differences in valuation of the firm’s assets and hence of the price settlement 
when new investors join the fund or the price paid to investors exiting the fund. It can 
also lead to a smoothing effect in the fund’s performance numbers.  

• Legal risk; in 2003, after some illegal activity involving mutual funds and some 
hedge funds, market timing activities (one small but profitable hedge fund style) 
became under general legal scrutiny. Investors in certain funds rushed for 
redemptions, driving the value of the assets remaining in the fund down dramatically. 
Changes in law affect all activities in life and in particular in the investment sector, 
but when they mix with highly complex, illiquid, investments such as the ones inside 
a hedge fund, the result can be dramatic. Tax laws can be particularly sensitive for 
certain hedge fund activity.  

 
And of course, hedge funds are exposed to investment risks in general:  

• Market Risk. The risk in reducing the value of the portfolio’s positions due to changes 
in markets.  

• Credit Risk. The risk in reducing the value of the portfolio’s assets due to changes in 
the credit quality of the counterparties.  

• Liquidity Risk. The risk of losses because of travel-time delays of assets.  

• Common factor risk: industry specific, geographical risk, etc.  

• Operational Risk. Internal systems, people, physical events.  

• Corporate event risk: earnings revisions, mergers, etc.  

• Model risk.  

• Legal and Regulatory Risk.  
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2.3. Strategies 
  

It is important to understand the differences between the various hedge fund 
strategies because all hedge funds are not the same -- investment returns, volatility and 
risk vary enormously among the different hedge fund strategies. Some of them, which 
are not correlated to equity markets, are able to deliver consistent returns with extremely 
low risk of loss, while others may be as or more volatile than mutual funds. A wide range 
of hedging strategies is available to hedge funds. For example:  

 Selling short - selling shares without owning them, hoping to buy them back at a 
future date at a lower price in the expectation that their price will drop.  

 Using arbitrage - seeking to exploit pricing inefficiencies between related 
securities - for example, can be long convertible bonds and short the underlying 
issuer’s equity.  

 Trading options or derivatives - contracts whose values are based on the 
performance of any underlying financial asset, index or other investment.  

 Investing in anticipation of a specific event - merger transaction, hostile takeover, 
spin-off, exiting of bankruptcy proceedings, etc.  

 Investing in deeply discounted securities - of companies about to enter or exit 
financial distress or bankruptcy, often below liquidation value.  

 Many of the strategies used by hedge funds benefit from being non-correlated to 
the direction of equity markets  

 Distressed securities funds look for shares or fixed-interest investments issued by 
companies which have gone into bankruptcy or are otherwise in trouble, in the 
hope that the investment will gain in value when the company emerges from its 
difficulties.  

 Macro funds look for global trends, in the hope of profiting from changes in 
interest rates or currency values.  

 Special situations funds react to news - good or bad - which is expected to result 
in a rapid change in the value of shares or fixed-interest investments.  

There are many other strategies, and some managers combine more than one. 

 

Hedge Fund Styles  
 

• Very high risk strategies 
 

Emerging Markets: Invests in equity or debt of emerging (less mature) markets 
that tend to have higher inflation, volatile growth and the potential for significant future 
growth. Examples include Brazil, China, India, and Russia. Short selling is not permitted 
in many emerging markets, and, therefore, effective hedging is often not available. This 
strategy is defined purely by geography; the manager may invest in any asset class (e.g., 
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equities, bonds, currencies) and may construct his portfolio on any basis (e.g. value, 
growth, and arbitrage). Expected Volatility: Very High 
  

Short Selling: In order to short sell, the manager borrows securities from a prime 
broker and immediately sells them on the market. The manager later repurchases these 
securities, ideally at a lower price than he sold them for, and returns them to the broker. 
In this way, the manager is able to profit from a fall in a security's value. Short selling 
managers typically target overvalued stocks that are characterized by prices they believe 
are too high given the fundamentals of the underlying companies. It is often used as a 
hedge to offset long-only portfolios and by those who feel the market is approaching a 
bearish cycle. Expected Volatility: Very High 
 

Macro: Aims to profit from changes in global economies, typically brought about 
by shifts in government policy that impact interest rates, in turn affecting currency, stock, 
and bond markets. Rather than considering how individual corporate securities may fare, 
the manager constructs his portfolio based on a top-down view of global economic 
trends, considering factors such as interest rates, economic policies, inflation, etc and 
seeks to profit from changes in the value of entire asset classes. For example, the manager 
may hold long positions in the U.S. dollar and Japanese equity indices while shorting the 
euro and U.S. treasury bills. Uses leverage and derivatives to accentuate the impact of 
market moves. The leveraged directional investments tend to make the largest impact on 
performance. Expected Volatility: Very High 
 
 

• High risk strategies 
 

Aggressive Growth: A primarily equity-based strategy whereby the manager 
invests in companies, with smaller or micro capitalization stocks, characterized by low or 
no dividends, but experiencing or expected to experience strong growth in earnings per 
share. The manager may consider a company's business fundamentals when investing 
and/or may invest in stocks on the basis of technical factors, such as stock price 
momentum. Managers employing this strategy generally utilize short selling to some 
degree, although a substantial long bias is common. This includes sector specialist funds 
such as technology, banking, or biotechnology. Expected Volatility: High 
 

Market Timing: The manager attempts to predict the short-term movements of 
various markets (or market segments) and based on those predictions, moves capital from 
one asset class to another in order to capture market gains and avoid market losses. While 
a variety of asset classes may be used, the most typical ones are mutual funds and money 
market funds. Market timing managers focusing on these asset classes are sometimes 
referred to as mutual fund switchers. Unpredictability of market movements and the 
difficulty of timing entry and exit from markets add to the volatility of this strategy. 
Expected Volatility: High 
 

• Moderate risk strategies 
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Special Situations: The manager invests both long and short, in stocks and/or 
bonds which are expected to change in price over a short period of time due to an unusual 
event. Examples of event-driven situations are mergers, hostile takeovers, 
reorganizations, or leveraged buyouts. It may involve simultaneous purchase of stock in 
companies being acquired, and the sale of stock in its acquirer, hoping to profit from the 
spread between the current market price and the ultimate purchase price of the company. 
Generally the results do not dependent on the direction of market. Expected Volatility: 
Moderate 
  

Value: A primarily equity-based strategy whereby the manager invests in 
securities perceived to be selling at deep discounts to their intrinsic or potential worth. 
The manager takes long positions in stocks that he believes are undervalued, i.e. the stock 
price is low given company fundamentals such as high earnings per share, good cash 
flow, strong management, etc. Possible reasons that a stock may sell at a perceived 
discount could be that the company is out of favour with investors or that its future 
prospects are not correctly judged by Wall Street analysts. Securities may be out of 
favour or under-followed by analysts. Long-term holding, patience, and strong discipline 
are often required, until the ultimate value is recognized by the market. The manager can 
take short positions in stocks he believes are overvalued. Expected Volatility: Low - 
Moderate 
 

Funds of Hedge Funds: The manager invests in other hedge funds (or managed 
accounts programs) rather than directly investing in securities such as stocks, bonds, etc. 
These underlying hedge funds may follow a variety of investment strategies or may all 
employ similar approaches. Because investor capital is diversified among a number of 
different hedge fund managers, funds of funds generally exhibit lower risk than do single-
manager hedge funds. Funds of funds are also referred to as multi-manager funds. It’s a 
diversified portfolio of generally uncorrelated hedge funds and it’s a preferred investment 
of choice for many pension funds, endowments, insurance companies, private banks and 
high-net-worth families and individuals. Returns, risk, and volatility can be controlled by 
the mix of underlying strategies and funds.  Expected Volatility: Low - Moderate - High 
 
 

• Variable risk strategies 
 

Opportunistic: Rather than consistently selecting securities according to the 
same strategy, the manager's investment theme changes from strategy to strategy as 
opportunities arise to profit; sudden price changes are often caused by an interim earnings 
disappointment, hostile bids, and other event-driven opportunities. Characteristics of the 
portfolio, such as asset classes, market capitalization, etc., are likely to vary significantly 
from time to time. The manager may also employ a combination of different approaches 
at a given time. Expected Volatility: Variable 
 

Multi Strategy: The manager typically utilizes many specific, pre-determined 
investment strategies, e.g., Value, Aggressive Growth, and Special Situations in order to 
better diversify their portfolio and/or to more fully use their range of portfolio 
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management skills and philosophies and also in order to realize short or long term gains. 
This style of investing allows the manager to overweight or underweight different 
strategies to best capitalize on current investment opportunities. Although the relative 
weighting of the chosen strategies may vary over time, each strategy plays a significant 
role in portfolio construction. Expected Volatility: Variable 
 

• Low risk strategies 
 

Distressed Securities: The manager invests in the debt and/or equity of 
companies having financial difficulty. Such companies are generally in bankruptcy 
reorganization or are emerging from bankruptcy or appear likely to declare bankruptcy in 
the near future. Because of their distressed situations, the manager can buy such 
companies' securities at deeply discounted prices. The manager stands to make money on 
such a position should the company successfully reorganize and return to profitability. 
Also, the manager could realize a profit if the company is liquidated, provided that the 
manager had bought senior debt in the company for less than its liquidation value. 
"Orphan equity" issued by newly reorganized companies emerging from bankruptcy may 
be included in the manager's portfolio. The manager may take short positions in 
companies whose situations he deems will worsen, rather than improve, in the short term. 
Generally the results do not dependent on the direction of market. Expected Volatility: 
Low - Moderate 
 

Income: Invests with primary focus on yield or current income rather than solely 
on capital gains, though it may also utilize leverage to buy bonds and (sometimes) fixed 
income derivatives in order to profit from principal appreciation and interest income. 
Other strategies (e.g. distressed securities, market neutral arbitrage, and macro) may 
heavily involve fixed-income securities trading as well. Expected Volatility: Low 
 

Market Neutral - Securities Hedging: The manager invests similar amounts of 
capital in securities both long and short, generally in the same sectors of the market, 
maintaining a portfolio with low net market exposure. Long positions are taken in 
securities expected to rise in value while short positions are taken in securities expected 
to fall in value. Due to the portfolio's low net market exposure, performance is insulated 
from market volatility. Market risk is greatly reduced, but effective stock analysis and 
stock picking is essential to obtaining meaningful results. Leverage may be used to 
enhance returns. It sometimes uses market index futures to hedge out systematic (market) 
risk. Expected Volatility: Low 
 

Market Neutral - Arbitrage: The manager seeks to exploit specific 
inefficiencies in the market by trading a carefully hedged portfolio of offsetting long and 
short positions. By pairing individual long positions with related short positions, market-
level risk is greatly reduced, resulting in a portfolio that bears a low correlation to the 
market. For example, long convertible bonds and short underlying issuer’s equity. For 
example, can be long convertible bonds and short the underlying issuer’s equity. It may 
also use futures to hedge out interest rate risk. These relative value strategies include 
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fixed income arbitrage, mortgage backed securities, capital structure arbitrage, and 
closed-end fund arbitrage. Expected Volatility: Low 
  
 
2.4. Hedge Fund Database Providers and Classification 
 
 Four primary databases are popular among researchers and in the investment 
industry. Providers of these databases offer different services to the industry. The Zurich 
Capital Markets (WCM/Hedge) database provides a comprehensive coverage of global 
hedge funds. The Hedge Fund Research (HFR) database contains more equity-based 
hedge funds. TASS is the information and research subsidiary of Credit Swiss First 
Boston Tremont Advisers. 
 Various database providers classify hedge funds, but in different ways. All the 
four databases have their own indices based on the categories in the database. The index 
composition is also different for different databases. Hedge fund categories are based on 
the self-reported style classification of hedge fund managers that are listed in a particular 
database. None of the database provides information on the complete hedge fund 
universe. The databases differ in the definition of the ‘hedge fund’. For example, TASS is 
the only database that includes the managed future funds. Unlike hedge funds, managed 
future funds limit their activities to the futures market. 
 
 Following issues are observed about the performance data for various databases: 

• A major limitation of most hedge funds databases is that they typically 
have data only on funds still in existence or that are new and growing. 

• Most hedge fund indices do not include performance of closed funds. 
• Only those funds that choose to report are included in the database. Not 

much can be done with this issue due to the industry structure. 
ZCM/Hedge and TASS have historical performances of all funds that are 
included in their database. Historical performances are not included (no 
backfilling) in index construction, but are available for fund analysis. 

• HFR, ZCM/Hedge and VanHedge have all inclusive selection criteria; 
they include all funds in their database that classify them as hedge funds. 
TASS has its own selection criteria. 

• The classification method varies across databases making them difficult to 
compare. 

 
Hedge fund managers employ a diverse array of strategies. The database providers 

classify hedge funds based on the voluntary information that they can collect from the 
hedge fund managers. Style definitions and the number of categories of hedge funds 
differ among the database providers. The classification of hedge funds by various 
database providers is briefly described here. 
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2.4.1. ZCM/Hedge Classification 
 
 

The ZCM/Hedge database classifies hedge funds into four general classes and ten 
broad categories of investment styles, as reported by the managers of the hedge fund. The 
classes are ‘onshore’ hedge fund (HF-US), ‘offshore’ hedge fund (HF-NON), ‘onshore’ 
fund-of-funds (FOF-US), and ‘offshore’ fund-of-funds (FOF-NON). Some of the 
categories have further sub-classification. ZCM/Hedge database categories are shown in 
Fig. 2. 

 
 
 

 
 
 
 

Fig.2. ZCM/Hedge classification of hedge funds 
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2.4.2. HFR Classification 
 
 

Hedge Fund Research (HFR) has twenty-six categories of hedge funds. Some of 
these categories are merely a type of financial instrument or a geographic area for 
investment. This classification can be reorganized into eleven categories as shown in Fig. 
3. Some of the categories have further classification. 

 
 
 

 
 
 
 

Fig.3. HFR classification of hedge funds 
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2.4.3. TASS Classification 
 
 

TASS is the information and research subsidiary of Credit Suisse First Boston 
Tremont Advisers. It has nine categories of hedge funds, classified based on the 
investment styles of hedge fund managers. Fig. 4 shows the classification of TASS 
database. For more information see Appendix. 
 
 
 
 

 
 
 

Fig.4. TASS classification of alternative investments 
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2.4.4. VanHedge Classification 
 
 

VanHedge maintains an extensive database of hedge funds. It provides 
consultancy and detailed generic performance data on hedge fund styles. VanHedge 
database can be organized into thirteen categories and five subcategories, as shown in 
Fig. 5. 
 
 
 

 
 

Fig.4. VanHedge classification of hedge funds 
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2.5. Alternative Classification Requirement 
 
 There exists a lot of variation in the definitions, calculation methodologies, 
assumptions, and data employed by the different managers and databases. It is necessary 
to benchmark hedge fund manager practices relative to their peers as hedge funds follow 
diverse strategies. The various classification schemes and multiple peer groups may vary 
depending on the strategies employed by the manager. It is important to clearly identify a 
peer for the various hedge fund strategies. This may not be an easy task since hedge fund 
managers refrain from disclosure. 
 Hedge funds are primarily distinguished by their use of short-selling, leverage, 
derivatives and portfolio concentration. Hedge fund manager refrains from disclosure for 
two reasons: They are not permitted by regulation to advertise to the public. Secondly, 
the proprietary nature of the traders may result in herding. Hedge fund managers profit by 
identifying arbitrage opportunities. These opportunities are based on very slim price 
differentials, but the manager hopes to profit by properly timing his trade and through 
portfolio concentration. 
 There is a need for an ‘alternative approach’ to hedge fund classification given the 
lack of ‘pure’ hedge fund types that exist in the industry. The hedge fund literature shows 
an almost complete reliance on the existing hedge fund classification. Performance 
comparison of various hedge funds with the existing hedge fund indices return data is not 
appropriate as a particular hedge fund could be classified in two or more classes 
depending on the database. Table 1 compares the classification of ZCM/Hedge, HFR, 
TASS and VanHedge databases. 
 
 
 
Item ZCM/Hedge HFR TASS VanHedge 
 
1a 
 
 
 
1b 

 
Event Driven: 
Risk Arbitrage 
 
 
Event Driven: 
Distressed 
Securities 

 
Event Driven: 
Merger Arbitrage 
 
 
Distressed 
Securities 

 
Event Driven: 
Risk 
Arbitrage 
 
Event Driven: 
Distressed 
Securities 

 
Special Situation  
 
 
 
Distressed Securities 

 
2 

 
Fund of funds 

 
Fund of funds 

 
None 

 
Fund of funds 

 
3 

 
Diversified 

 
Fixed Income 
Diversified 

 
None 

 
Several Strategies 

 
4 

 
Niche 

 
Fixed Income:  
High Yield  
 
Regulation D 

 
Event Driven: 
Regulation D 
 
Event Driven: 
High Yield 

 
None 
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5 

 
Global 

 
Emerging Markets 

 
Emerging 
Markets 

 
Emerging Markets 

 
6 

 
Macro 
Opportunistic 

 
Macro 
 
Market Timing 
 
Relative Value 
Arbitrage 
 
Statistical Arbitrage
 

 
Global Macro 

 
Opportunistic 
 
Value Managers 

 
7 

 
Long Only/ 
Leveraged 

 
Equity Non-hedge 

 
None 

 
None 

 
8a 
 
 
8b 
 
 
 
8c 
 
 
 
8d 

 
Market Neutral: 
Long/Short 
 
Market Neutral: 
Arbitrage 
Convertible 
 
Market Neutral: 
Arbitrage Stock 
 
 
Market Neutral: 
Arbitrage Bond 

 
Equity Hedge 
 
 
Convertible 
Arbitrage 
 
 
Equity Market 
Neutral 
 
 
Fixed Income 
Arbitrage 

 
Long/Short 
Equity 
 
Convertible 
Arbitrage 
 
 
Equity Market 
Neutral 
 
Fixed Income 
Arbitrage 

 
Market Neutral: 
Securities Hedge 
 
Market Neutral: 
Arbitrage 
 
 
Market Neutral: 
Arbitrage 
 
 
Market Neutral: 
Arbitrage 

 
9 

 
Sector 

 
Sector: Energy 
Sector: Financial 
Sector: Health 
Care/Biotechnology
Sector: 
Metals/Mining 
Sector: Real Estate 
Sector: Technology 

 
None 

 
Financial Services 

Health Care 

Income 

Media/Communications

Technology 

 
10 

 
Short Selling 

 
Short Selling 

 
Dedicated 
Short Bias 

 
Short Selling 

 
Table1. Comparison of ZCM/Hedge, HFR, TASS and VanHedge Classifications 
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It appears from Table 1 that research on hedge fund performance may produce 

different results, based on the database used. There seems to be no common comparison 
basis for the existing literature on hedge funds. The disparity that is observed in the 
number produced between different organisations measuring hedge funds performance 
could be attributed to the varied classification of hedge funds. Goldman Sachs & Co. & 
FRM describes various methods used by hedge fund managers. The description of 
various hedge fund styles certainly does not cover all the permutations, but provides an 
overall idea of the various strategies used by the managers. Table 2 compares the 
different segments of hedge fund in terms of investment strategy, use of leverage and risk 
control. 

 
 
 
 

Segment Investment Strategy Use of leverage Risk Control 
 
Market Neutral or 
Relative Value 

 
Seek out basic 
mispricings between 
securities. 

 
Aggressively use 
leverage to capitalize 
on otherwise small 
pricing differences. 

 
Broad market risk is 
eliminated completely 
to capitalize on 
relative mispricing. 

 
Event Driven 

 
Seek out valuation 
disparities produced 
by corporate events 
that are less dependent 
on overall stock 
market gains. 

 
Use of leverage varies 
from situation to 
situation, but in 
general leverage is 
used conservatively. 

 
Portfolio is diversified 
among a number of 
position s to reduce 
the impact of any 
single position that 
does not work out as 
anticipated. Hedge 
against market risk by 
purchasing index put 
options and short 
selling. 

 
Long/Short 

 
Seek out mispriced 
securities based on the 
business prospects of 
the firms, using both 
long and short 
positions. 

 
Historically, they 
maintain leverage 
positions ranging 
from slightly short to 
100% long. 

 
It is often 
accomplished through 
market neutral 
positions. Some 
accomplish this within 
industry groups and 
employ greater 
amount of leverage. 

 
Tactical Trading: 
Systematic 
Managers 

 
Seek out mispriced 
securities using 
statistical analysis, 
which is applied to 
historical data. 

 
A high degree of 
leverage is used to 
capitalize on small, 
but statistically 
significant, return 
opportunities. 

 
Risk control is vital. 
Managers eliminate 
all risk except the risk 
that their models 
indicate as profitable. 
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Tactical Trading: 
Discretionary 
Managers 

 
Seek out mispricing in 
global currency, stock 
and bound market 
using derivatives. 

 
Use of leverage is 
kept to a minimum 
due to lack of risk 
control. 

 
Risk control is 
difficult to achieve 
because of low 
correlation between 
currencies and indices 
within a market. 

 
Fund of Funds 

 
Seek out 
diversification by 
investing in a variety 
of hedge funds. 

 
Not applicable. 

 
Risk control is 
achieved through 
diversification of 
hedge funds. 

 
Table2. Comparison of different core segments of hedge fund investments 

 
 

2.4. Literature review 
 

The study of hedge funds is a recent phenomenon. Most of the literature is less 
than a decade old and can be divided into three main categories: performance attribution 
(modelling returns), performance evaluation and characteristics and impacts on the 
financial markets. 
 
 
2.4.1. Performance attribution (modelling returns) 
 

This analysis attempts to find the factors affecting the hedge fund return. When 
modelling hedge funds performance as a group, no distinction is made between the 
different categories. Ackerman et al. (1999) isolated hedge funds characteristics that 
explain the performance and volatility of hedge funds and founds that incentive fees can 
be used to explain risk-adjusted performance. 

Different managers and databases classify hedge funds differently. One particular 
hedge fund could be grouped under one category, based on a strategy, in one database, 
whereas the same hedge fund would be listed under a different category in some other 
database. The studies made extract strategies from observed returns and try to reclassify 
hedge funds based on observed return characteristics. Fung and Hsieh (1997) develop an 
integrated framework for analysing traditional managers with absolute return targets 
(mutual funds) as well as alternative managers with absolute return targets (hedge funds) 
and find that Sharpe’s style regression is not appropriate for discovering performance 
attributes, but non-linear look-back straddles could be a good approach. 

Another way of modelling a particular hedge fund strategy consists on taking the 
database classification as given and studying only one strategy at a a time. Fung and 
Heish (2001) modelled the nonlinear relationship between style factors and the markets 
where the hedge funds trade. They found that the trend-following strategies can be 
modelled using look-back straddles. 
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2.4.2. Performance evaluation 
 
 This analysis compares the return earned on a hedge fund with the return earned 
on some other standard investment asset. Research in this area can be divided into three 
main groups:  
 An investment benchmark is a passive representation of a manager’s investment 
process. This represents the prominent financial characteristics that the investment would 
exhibit in the absence of active investment judgement. Key benchmarking research 
supports the fact that hedge funds outperform mutual funds, even on a risk adjusted basis. 
Ackermann et al. (1999) find that hedge funds are more volatile than both mutual and 
market indices; Agarwal and Naik (2000) analyse the degree of out-performance of hedge 
funds strategies over a portofolio of passive strategies and find that hedge fund managers 
exhibit superior market timing and security selection ability; Fung and Hsiesh (2001) 
show that hedge fund categories should be reclassified into key hedge-fund styles, that is 
pairs of strategy and location. 

The second aspect of performance evaluation, persistence deals with the 
examination of whether the hedge fund managers demonstrate persistence in their 
performance and how the survival rate affects performance persistence. Support for 
performance persistence within individual hedge fund strategies using both parametric 
and non-parametric methods and also using a multi-period framework was found by 
Agarwal and Naik (2000); their results indicate that that the extent of persistence 
decreases as the return interval increases. Capocci, Corhay and Hübner (2004) showed 
that if persistence is present in hedge fund returns, excess return creation was present in 
most of the cases and there was a clear proof of persistency in hedge fund returns. 
Edwards and Caglayan (2001) proved that only three hedge fund strategies (Market 
Neutral, Event Driven and Macro) provide protection to investors when stock markets 
head south. Ennis’ and Sebastian’s (2003) research showed that hedge funds did not 
provide investor protection after the market downturn of March 2000 

The third area of evaluation deals with performance in a portfolio context that is 
the diversification benefits of including hedge funds in a traditional portfolio of stocks 
and bonds. Some researchers (Agarwal and Naik (2000), Lamm and Ghaleg-Harter 
(2000)) support the diversification effects of hedge funds. 

 
2.4.3. Characteristics and impact on financial market 
 
 This area starts with general characteristics and progresses to performance 
attributes. The researchers study the characteristics of the hedge fund industry, including 
the fee structure, data conditioning biases, and the risk/return characteristic of various 
hedge fund strategies. Returns are summarized in Fung and Hsiesh (1999), who studied 
the different types of biases presented in the hedge fund performance data, and suggested 
fund-of-funds as a better proxy for market portfolio based on the smaller impact of biases 
inherent to individual hedge fund returns. Brown et al. (2001) seeks whether hedge fund 
return variance depend upon the manager’s performance, and finds that survival depends 
on volatility, age and both absolute and relative performance of the fund.. 
 In the last area, researchers study the role of hedge funds in the financial market 
crisis and the implications for policy. Brown et al. (2000, 2001) tested the hypothesis that 
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hedge funds were responsible for the 1997 crash in the Asian currencies, and found that 
hedge fund managers as a group did not cause the crash.  
 
2.4.4. Other studies 
 

Studies by Agarwal and Naik (2004) and Capocci (2002) confirm that hedge 
funds are significantly exposed to standard asset classes, although the exposure is small 
compared to the one found with mutual funds. Schneeweis and Spurgin and Amenc, 
Martellini and Vaissié (2002) show that hedge fund returns are not only exposed to the 
market risk, but that other risks like volatility risk, default risk or liquidity risk have to be 
considered.  

Fung and Hsieh (1997) explain the limited explanatory power of standard asset 
classes with respect to hedge funds in another way: Contrary to mutual fund managers 
who have relative return targets, hedge fund managers have absolute return targets. While 
mutual fund managers follow generally buy-and-hold strategies with limited leverage and 
the only decision being where to invest, hedge fund managers can choose not only the 
location, but also the trading strategy of their investments. This leads to nonlinear option-
like exposures of hedge funds to standard asset classes.  

Starting from the findings of Fung and Hsieh (1997), Agarwal and Naik (2004) 
introduce a general asset class model containing buy-and-hold strategies (location 
factors) and passive option-based strategies (trading strategy factors). They find that the 
option-based strategies can explain a significant proportion of variation in hedge fund 
returns. Capocci (2002) compares several models, including the four-factor model by 
Carhart (1997) and an extension of the model by Agarwal and Naik (2004). The latter 
model proves to perform best in explaining the variation of hedge fund returns. The 
results of Agarwal and Naik (2004) and Capocci (2002) indicate that besides exposure to 
traditional asset classes, which is measured by traditional beta, hedge funds are exposed 
to additional alternative risk factors. The exposure to this alternative risk factors is 
measured by alternative beta. The results of Géhin and Vaissié (2005) confirm these 
findings. The authors observe that certain hedge fund styles have significant exposures to 
alternative risk factors. 
 McGuire, Remolona, and Tsatsaronis (2005) analyse the time-varying exposure of 
different hedge fund investment styles (directional, market-neutral and equity-focused) to 
various risk factors using moving window regression. They show that despite the 
homogeneity of hedge fund strategies, the exposure of the analysed strategies to some 
common risk factors, although similar between the strategies. Exposure to other market 
risk factors like fixed income is found to be homogeneous between strategies. 
 Time-varying exposure is the predominant characteristic in nowadays hedge 
fund’s literature. The beta of a portfolio changes when either the underlying asset betas 
change and/or when the portfolio weights are changed. For hedge funds containing 
mainly stocks (long/short equity and equity market neutral), the presence of the first 
characteristic can be tested by looking at time-variation in stock betas. Research by Wells 
(1996) on Swedish stocks and Yao and Gao (2004) on Australian industry portfolios 
confirm that betas of stocks and stock portfolios are time-varying. Both authors use 
dynamic models and recursive filtering techniques. The presence of the second 
characteristic implies an active fund management. Fung and Hsieh (1997) argue that 
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hedge fund managers reduce the correlation to asset class returns by adjusting the 
portfolio weights and hereby actively changing the exposure of their funds to asset 
classes. Mamaysky, Spiegel, and Zhang (2003) apply a model that assumes constant asset 
betas, but time-varying portfolio weights to analyse the dynamics of mutual funds alphas 
and betas. Contrary to the latter, Mamaysky, Spiegel, and Zhang (2003) assume that fund 
managers assign the weights of individual assets within a portfolio according to a lagged 
information variable which is latent and has no economic explanation. Based on this, they 
develop a model of the evolution of the portfolio’s alpha and beta that requires no 
knowledge of the alphas and betas of the individual underlying stocks and their weights 
within the portfolio. The fund’s dynamic alpha and beta are estimated using an Extended 
Kalman Filter in order to identify funds with substantially positive alphas. The authors 
show that using the model to select successful funds and to build a portfolio out of them 
leads to results that beat the market benchmark. 
 Considering the high fees of hedge funds, investors should not pay fees for static 
exposure which they can get cheaper by investing in mutual or index-tracking funds. It is 
therefore essential to know whether hedge funds still deliver absolute returns once the 
exposure to traditional and alternative risk factors has been neutralised. Fung and Hsieh 
(2004a) extract alternative alphas from diversified hedge fund portfolios after hedging 
away the exposure to S&P 500 and SMB. They show that these alternative alphas exhibit 
almost no sensitivity neither to the eight traditional asset-class indices5nor to the seven 
hedge fund risk factors, even under extreme market conditions, and are thus portable. The 
authors conclude that long/short equity hedge funds show significant absolute returns 
after taking into account alternative and traditional market risk and that these absolute 
returns are not only an effect of bull markets. 
 
2.4.5. Traditional beta, alternative betas, and alpha 

The specific exposures of hedge funds - Walter Géhin, Mathieu Vaissié 
(2005) 

Two studies, by Watson Wyatt and UBS (2005), give a pessimistic view of the 
hedge fund industry's capacity to generate long-term returns, due to its increasing size. 
Unfortunately, these studies focus almost exclusively on alpha. Walter Géhin, Mathieu 
Vaissié (2005) showed the importance of considering not only the exposure to the market 
(the traditional beta), but also the other exposures (the alternative betas) to cover all the 
sources of hedge fund returns. They examined the real extent to which the variability and 
level of hedge fund returns are affected by (static) betas, dynamic betas (i.e. factor 
timing), and pure alpha (i.e. security selection). 

Like a mutual fund, a hedge fund can be exposed to the traditional beta, in other 
words to the market risk consisting of unforeseeable variations in the prices of basic 
assets, stocks and bonds. However, a hedge fund is also exposed to risk factors which 
are different from those of long-only managers (so-called alternative betas): 

• volatility risk - refers to unforeseeable variations in the variability of the prices 
• default risk - is related to unforeseeable variations in the propensity of certain 

counterparties to no longer be able to respect their commitments 
• liquidity risk - consists of unforeseeable variations in the capacity to move 

quantities of assets in a "reasonable" time scale at market prices 
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No directional strategies are generally considered to be non-exposed to market 
risk, but they are exposed to these risks. The hedge funds’ exposure to risk factors by 
strategy, during the period January 1997 – December 2004 is presented in Table3. 
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Equity 
market 
neutral 

 +   + + + +  - - +  + 

Fixed 
income 
arbitrage 

+        +  -  -  

Convertible 
arbitrage  +     -   + - +  + 

Merger 
arbitrage + +   +  + -  - -   + 

Distressed 
securities + -   +  +    -    

Long/Short 
equity + + -  +  +   - -    

Global 
macro + +   + - +   - - + -  

CTA 
macro + -     -    + + -  

Emerging 
markets + +   +  +    -    

 
Table3. Exposure to risk factors by strategy – from January 1997 to December 2004  

[Source: Edhec Risk and Asset Management Research Centre] 
  

Hedge fund returns are the addition of the: 
• traditional beta - normal returns generated from exposure to rewarded market 

risk 
• alternative betas - normal returns generated from exposure to other systematic 

risks – dynamic betas (factor timing) 
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• alpha - abnormal returns due to the manager's skill – security selection 
 

     R Hedge Funds = α + Traditional β + Alternative βs           (2.1)
Total alpha, i.e. the manager’s skill, is then the sum of pure alpha and dynamic 

betas. The authors then estimate the contribution of these components by applying a 
dynamic model with Kalman filtering (although they do not disclose the exact model they 
use). They find that while on average about half of the variability in returns comes from 
alpha (with 25% from pure alpha and 24% from dynamic beta), the contribution of static 
beta to performance is more than 99% on average, with a positive pure alpha of 4% and a 
negative dynamic beta of -3%. Despite these average values, in most cases the 
contribution of dynamic betas to total alpha is much more pronounced than the 
contribution of pure alpha, which indicates that total alpha is rather driven by factor 
timing than the selection skills and underlines the importance of correctly identifying 
time-varying betas. This argument however neglects the possibility that dynamic betas 
might not come from managers’ timing skills, but be a result of dynamic betas of the 
underlying assets. In most cases, the trend of value added through dynamic betas is much 
more pronounced than that of pure alpha, suggesting that the evolution of total alpha is 
mainly driven by the ongoing value added through dynamic betas. This result is 
particularly interesting as it suggests that hedge fund strategies' alpha, contrary to what 
has recently been said is more limited by manager capacity than by market capacity. This 
comes from the fact that the level of pure alpha primarily depends on the quantity of 
market opportunities that are available to hedge fund managers, while the level of value 
added through dynamic betas depends above all on the ability of hedge fund managers to 
time factors with success. 

Taking the above decomposition of alpha and beta, Géhin and Vaissié (2005) 
conclude that hedge funds cannot simply be defined as absolute return vehicles that 
always deliver positive results without exposure to risks. They argue that exposures to 
traditional and alternative risk factors are undervalued compared to pure alpha although 
they are responsible for an overwhelming part of the hedge fund returns. Consequently, in 
the authors view hedge funds should be considered as an asset class which in 
combination with traditional investments offers beta diversification. They sustain that the 
beta-benefits of hedge fund investing are more convincing and attractive than the alpha-
benefits and even though alpha does not appear to be seriously threatened by the increase 
in market participants, they are more prone to promoting the long-term diversification 
power presented by hedge funds than the difficult and random search for alpha. 

This opinion is shared by Jaeger and Wagner (2005). They point out that as it is 
difficult to decompose hedge fund returns into alpha and beta and as there is no model for 
describing alpha directly, alpha is the remaining average part of the return when all beta 
contributions (traditional or alternative) are subtracted. From this point of view, any 
unaccounted beta will erroneously be attributed to alpha. Under- respectively 
overestimation of beta will lead to an under- respectively overestimation of alpha. The 
authors conclude that given the described decomposition difficulties it is hard to verify 
whether hedge funds really deliver absolute returns. Moreover they claim that estimations 
of beta are more accurate than those of alpha. In their view, investors should start to 
recognize the diversifying opportunities offered by alternative betas rather than just focus 
on absolute returns. 
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Chapter 3 
 

Gaussian Approximate Bayesian Estimation – 
Kalman Filter Framework  
Summary 

3.1. Introduction 
3.2. Kalman Filter 
3.3. Extended Kalman Filter (EKF) 
3.4. Unscented Kalman Filter (UKF) 
3.5. Central Difference Kalman Filter (CDKF) 
3.6. Square-Root Unscented Kalman Filter (SRUKF) and Square-Root 
Central Difference Kalman Filter (SRCDKF) 

 
 

3.1. Introduction 
  

Probabilistic inference is the problem of estimating the hidden states of a system 
in an optimal and consistent fashion given a set of noisy or incomplete observations. The 
optimal solution to this problem is given by the recursive Bayesian estimation algorithm 
which recursively updates the posterior density of the system state as new observations 
arrive online. This posterior density constitutes the complete solution to the probabilistic 
inference problem, and allows us to calculate any "optimal" estimate of the state. 
Unfortunately, for most real-world problems, the optimal Bayesian recursion is 
intractable and approximate solutions must be used.  

The Kalman filter was first presented in 1960 in a paper by R.E. Kalman. The 
filter provides a recursive solution to a discrete-data linear filtering problem. It estimates 
a hidden system state in a way that minimizes the mean squared error. Since its 
introduction and with the increase in computing power, the Kalman filter has become an 
important tool. Various books and publications cover the basics and applications of the 
filter. One of the most comprehensive of them was written by Harvey (1989). It covers 
the mathematical background of the filter as well as applications on financial time series. 
Welch and Bishop (2001) give a well understandable overview of the Kalman and 
Extended Kalman Filter. 

 The filter has been extended in order to cover also nonlinear filtering problems. 
Within the space of approximate solutions, the Extended Kalman filter (EKF) has become 
one of the most widely used algorithms with applications in state, parameter and dual 
estimation; this method uses the Gaussian approximations. Unfortunately, the EKF is 
based on a sub-optimal implementation of the recursive Bayesian estimation framework 
applied to Gaussian random variables. This can seriously affect the accuracy or even lead 
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to divergence of any inference system that is based on the EKF or that uses the EKF as a 
component part. Rudolph van der Merwe & Eric Wan (2004) have generalized these 
algorithms, all based on derivative less statistical linearization, to a family of filters 
called Sigma-Point Kalman Filters (SPKF) – Unscented Kalman Filter (UKF), Central 
Difference Kalman Filter (CDKF), Square-Root Unscented Kalman Filter (SR-UKF), 
Square-Root Central Difference Kalman Filter (SR-UKF) - which will be presented 
further on in this chapter, and successfully expanded their use within the general field of 
probabilistic inference, both as stand-alone filters and as subcomponents of more 
powerful sequential Monte Carlo filters (particle filters). The particle filters will be 
presented in chapter 4. 

 
 

3.2. Kalman Filter (KF) 
 
 The Kalman Filter is the oldest standard recursive solution for linear filtering 
problems. It does not require all the past data to be kept in memory and processed for 
each new state. It processes previous observations/ measurements to obtain the current 
state; each updated estimate of state is computed from previous estimate and new input 
data.  

Kalman’s original derivation of the Kalman filter did not require the underlying 
system equations to be linear or the probability densities to be Gaussian. The only 
assumptions made are: 

• Consistent minimum variance estimates of the system random variables can be 
maintained by propagating only their first and second order moments (means and 
covariances) - the densities are not required to be Gaussian; only the Gaussian 
components (mean and covariance) of these densities in the estimator are 
maintained  

• The estimator (measurement update) itself to be linear 
• Accurate predictions of the state (using process model) and of the system 

observations (using observation model) can be calculated. 
These expectations can in general only be calculated exactly for linear Gaussian random 
variables. This does not however disallow the application of the Kalman framework to 
nonlinear systems. It just requires further approximations to be made. One such 
approximation is the linearization of the dynamic state-space models through the use of a 
first order truncated Taylor series expansion around the current estimate of the system 
state. This algorithm is known as the extended Kalman filter (EKF), which will be 
presented next in this chapter. 
 The Kalman filter estimates a process by using a form of feedback control: the 
filter estimates the process state at some time and then obtains feedback in the form of 
(noisy) measurements. The algorithm resembles that of a predictor-corrector algorithm 
for solving numerical problems. As such, the equations for the Kalman filter fall into two 
groups:  

• time update equations   
o responsible for projecting forward (in time) the current state and error 

covariance estimates to obtain the a priori estimates for the next time step 
o predictor equations 
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• measurement update equations  
o responsible for the feedback (for incorporating a new measurement into 

the a priori estimate to obtain an improved a posteriori estimate) 
o corrector equations 

 
Kalman derived [***102] the following recursive form of the optimal Gaussian 

approximate linear Bayesian update (Kalman update for short) of the conditional mean of 
the state random variable, xk = E [xk|y1:k] and its covariance, Pxk: 
 

xk   =  (prediction of xk)  + Kk  (yk − (prediction of yk))  (3.1) 

        

             =   xk
− + Kk (yk − yk

−)      (3.2) 

 

Pxk  =  Pxk
− − Kk P˜ykKk

T      (3.3) 
 

While this is a linear 
terms in this recursion are given by:  

recursion, we have not assumed linearity of the model. The optimal 

 

xk
−   =   E [f (xk−1, uk−1, wk)]      (3.4) 

 

This is the optimal prediction (prior mean at time k) of xk that corresponds to the 
expectation (taken over the posterior distribution of the state at time k − 1) of a nonlinear 
function of the random variables xk−1 and uk−1. The random variables wk and vk represent 
the process and measurement noise in equation (3.4) and equation (3.5). The non-linear 
function f relates the state at the previous time step k − 1 to the state at the current time 
step. It includes as p se 
w . The non-linear function h in the measurem quation (3.5) relates the state x  to the 

arameters any driving function uk and the zero-mean process noi
k k

measurement y
ent e

k. 
 

y  =   E [h (x v )] 

Similar interpr tim

k k
−   − , k

 

    (3.5) 

etation for the op al prediction yk
−, except the expectation is taken over 

bution of the state at time ). the prior distri k
 

Kk      =   E [(xk − xk
−) (yk − yk

−)T] E [(yk − yk
−) (yk − yk

−)T] − 1  
         (3.6) 

 

                    =   Pxk ˜ykP˜yk
−1       (3.7) 

 

The optimal gain term Kk is expressed as a function of the expected cross correlation 
matrix (covariance matrix) of the state prediction error and the observation prediction 
error, and the expected auto-correlation matrix of the observation prediction error. The 
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error between the true observation and the predicted observation, ˜yk = yk − yk
− is called 

the innovation.  The evaluation of the covariance terms also requires taking expectations 
of a nonlinear function of the prior state variable. 

These expectations can in general only be calculated exactly (in an analytical 
sense) for a linear dynamic state-space model and Gaussian random variables. Under 
these (linear, Gaussian) conditions, the Kalman filter framework is in fact an exact 
solution of the optimal Bayesian recursion. This is probably why the Kalman filter 
framework is often misconstrued as only applicable to such linear, Gaussian systems. 
This does not, however, disallow the application of the Kalman framework to nonlinear 

till the (minimum variance) optimal Gaussian approximate linear 
mptions hold. This does however require further 

e a ework to nonlinear 
systems. Specifically, e 

s 3.4 through 3.7) are calculated. 
 
If we assume the following linear dynamic state space model, then we have the 

foll i

Pro s

Me r
k k k

• w  and v  are independent, zero mean white, Gaussian noise processes with 
ix Qk and Rk  

he difference equation (3.8) relates the state at the previous time 
step k-1 to t
function or pro

tion (3.9) relates the state to the 
measurement y

systems. As mentioned above, even for nonlinear, non-Gaussian systems, the Kalman 
filter framework is s
estimator, if the rest of the assu
approximations to b  m de in order to practically apply this fram

 these approximations directly address how the optimal terms in th
Kalman update (Equation

ow ng equations: 
 

ce s equation:     
xk +1 = Fk+1;k xk + wk      (3.8) 
 

asu ement equation: 
 yk   =  H x  + v        (3.9) 
 

k k
covariance matr

• The matrix F in t
he state at the current step k, in the absence of either a driving 

cess noise 
• The matrix H in the measurement equa

k. 
 
Initial values for k = 0 
nitial estimate of state: I

 

x0 = E [x0]        (3.10) 

 

nitial estimate of a posteriori covariance: I
 

P0 = E [(x0 − E[x0]) (x0 − E[x0]) T]    (3.11) 
 

ime update equations T
 

The time update equatio
rror covariance estim priori estimates for the next time step. 

– project the state ahead 

ns are responsible for projecting forward the current state and 
e ates to obtain the a 
 
State estimate propagation 
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xk
−   =   Fk; k−1 xk−1      (3.12) 

 

Error covariance propagation – project the error covariance ahead 
 

Pk
− = Fk; k−1P k−1 FT

k; k−1 + Q k−1     (3.13) 
 

 
 

easurement updatM
 

e equations 

The measurement upd
d a posteriori estimate. The first step during 

he measurement update is to calculate the Kalman gain, which is chosen such that it 
minimizes the a pos

ed with the previous a posteriori estimates used to project or 
ates. 

 
alman gain matrix 

Kk = P k
− Hk

T [ HkPkHk
T + Rk] −1     (3.14) 

ate equations are responsible for incorporating a new measurement 
into the a priori estimate to obtain an improve
t

teriori error covariance. After each time and measurement update 
pair, the process is repeat

redict the new a priori estimp

K
 

 

State estimation update with measurement yk
 

xk  =  xk
− + Kk  (yk − Hk xk

−

3.3. E

When the stric  
must be used. The mo espread is the Extended Kalman f er (E  
the standard Kalman f ) is normally 

und the most recent time estimate by computing the 
Jacobia e nonlinear functions with 

 the corresponding variables in the system and observation equations. After the 
linearization, the equa ns  Kalman filter can be used. 

Consider a nonlinear dyn
model: 

f k) k 

yk     =  h(k; xk) + vk       (3.18) 

 )     (3.15) 

 

Error covariance update 
 

Pk  =  (I − KkHk) P k
−       (3.16) 

 
 
 

xtended Kalman Filter (EKF) 
 

t assumptions of the Kalman filter do not hold, approximate filters
st simple and wid ilt KF). As
ilter, EKF assumes that the posterior density p (x |yk 1:k

distributed, i.e. it is approximated by a Gaussian. The EKF linearizes the state space 
model at each time instant aro

n matrices. These are defined as the derivatives of th
respect to

tio  for the standard
amical system described by the following state-space 

 

xk+1 =  (k; x + w       (3.17) 
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where wk and vk are independent zero-mean white Gaussian noise processes with 
covariance matrices Rk and Qk.  

The approximation follows in the following two steps: 
taS ge 1: 

Fk+1,k  =    ∂f(k,x)
∂x

  x = xk     (3.19) 
 

Hk  =    ∂h(k,xk)
∂x

 x = xk-     (3.20) 
  

The ij-th entry
F(k; x) with respect to the j-th com k

j-th component of  

 
Stage 2: 

Once the matrices Fk+1;k and Hk are evaluated, they are employed in a first order 
approximation of the nonlinear functions F(k; x ) and H(k; x ) around x  and xk

− . 
 

k

k k k+1;k k

k+1 ≈ Fk+1;kxk + wk + dk      (3.23) 

  ≈ Hkxk + vk        (3.24) 

where 
 

 Hk xk−     (3.25) 

 
he extended Kalman filter equations are given below: 

itial values for k = 0 

: 

 of Fk+1;k is equal to the partial derivative of the i-th component of 
ponent of x. The ij-th component of H  is equal to the 

partial derivative of the i-th component of H(k; x) with respect to the 
x. 

Taylor k k k

F (k; x )  ≈  F (x; x ) + F (x; x )     (3.21) k k+1;k k
 

 (k; x ) ≈  H (x; x ) + H (x; x − )    (3.22) H
 

Hence the non linear state equations are given as: 
 

x
 

 yk 
 

yk  = yk − h(x; xk− ) −
 

dk  =  f(x; xk) − Fk+1;kxk       (3.26) 

T
 

In
 

Initial estimate of state
 

x0 = E [x0]        (3.27) 

Initial estim
 

P E x − E[x0]) (x0 − E[x0]) ]    (3.28) 
 
 
 

•

 

ate of a posteriori covariance: 
 T

0 = [( 0 

 
1. Pred iict on step  

 Compute the process model Jacobians 
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• Time update equations  - predicted state mean and covariance 
 

ation State estimate propag
xk
−   =   f (k; xk−1)      (3.29) 

 

Error covariance propagation 
 

= Fk; k−1P k−1 F k; k−1 + Q k−1      (3.30) 

2. Correction step 
• Compute the process model Jacobians 

Pk
− T 

 

• Measurement update equations – update estimates with latest observation 
 

Kalman gain matrix 
 

Kk = P k
− Hk

T [ HkPkHk
T + Rk] −1     (3.31) 

 

State estimation update with measurement yk
 

xk = xk
− + Kk  yk − h(k, xk

− )    (3.32) 

 

Error covariance update 
 

Pk  =  (I − KkHk) P k
−      (3.33) 

idely used estimation algorithm for 
on linear systems. This filter approximates the non linear model as time varying linear 

model,

tistics of the 
posterior distributions of the states. This is especially evident when the models are highly 
nonlinear and the local linearity assumption breaks down, i.e., the effects of the higher 
order terms of the Taylor series expansion becomes significant. The UKF is provably 
superio s or Hessians. In 

 
The Extended Kalman Filter rests one of the most w
n

 where the state distribution is propagated through the first - order linearization of 
the non linear system. The linearization method employed by the EKF does not take into 
account the fact that x is a random variable with inherent uncertainty. The linearization 
around a single point (the current state estimate) has large implications for the accuracy 
and consistency of the resulting EKF algorithm. These approximations often introduce 
large errors in the EKF calculated posterior mean and covariance of the transformed 
(Gaussian) random variable, which may lead to suboptimal performance and sometimes 
divergence of the filter. 
 
  
3.4. Unscented Kalman Filter (UKF) 
 

The Unscented Kalman Filter is proposed as an alternative to Extended Kalman 
Filter. Because the EKF only uses the first order terms of the Taylor series expansion of 
the nonlinear functions, it often introduces large errors in the estimated sta

r to the EKF. It does not need to explicitly calculate the Jacobian
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the UKF the state distribution is still represented by a Gaussian random variable, but it is 
eterministically chosen sample points. These sample 

oints completely capture the true mean and covariance of the Gaussian random variable, 
and wh

oucet, de Freitas, and Wan [42, 44]. 

 
 
 
 

Unsce

 =  x        (3.34) 
 

specified using a minimal set of d
p

en propagated through the true nonlinear system, captures the posterior mean and 
covariance accurately to the 2nd order for any nonlinearity, with errors only introduced in 
the 3rd and higher orders. This small number of carefully chosen sample points –called 
sigma-points – when propagated in each estimation step, provides a compact 
parameterization of the underlying distribution ([1] see Fig.2). An explicit description of 
UKF can be found in van der Merwe, D

 

nted Transformation 
 

The Unscented Transformation is a method for calculating the statistics of a 
random variable which undergoes a nonlinear transformation when propagating a random 
variable x through a nonlinear function, y = f(x). It builds on the principle that it is easier 
to approximate a probability distribution than an arbitrary nonlinear function. X has mean 
x and covariance Px. To calculate the statistics of y, we form a matrix x of 2L + 1 sigma 
vectors Xi according to the following: 

 

Xo

Xi  =  x  +  ( (L + λ)Px)i     (3.35) 
 

i   =  x    (X − (L + x)i−     (3.36) 

 
spread of the sigma points around x, and is usually a small positive value. The constant κ 
is a se ther 0 or 3 - L. β is an extra degree of 
freedom scalar parameter used to incorporate any extra prior knowledge distribution of x 
(for Gaussian distributions  

These sigma points are propagated through the non linear function and the mean 
and covariance are approximated using a weighted sample mean and covariance of the 
posterior sigma points

 

∑
0

i 

   Py  ≈  ∑
0

2L
W i

(c) (Yi − y ) (Yi − y )T     (3.38) 

 

The weights are calculated as follows:  
 
 

 o (m) =  λ
λ+L

λ)P L  
 

where λ = α2(L + κ) − L is a scaling parameter. The constant α determines the

condary scaling parameter, equal to ei

 its optimal value is 2).

. 

y  ≈ 
2L

Wi
(m) Y       (3.37) 

 

W  
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W  (c)  =  λ + 1 − α² +  β o λ+L

W i (m)  = W i (c)  =  1
2 (L +  λ)

     (3.39) 

 
 
 
 
 
 
 
 
 

 
 
(a)  

Fig.2: Graphical Depiction of the Superiority of the Unscented Transformation for mean 
      (b)    (c) 

and covariance propagation – Rudolph van der Merwe [10] 
(a) Actual Propagation (b) First Order EKF Linearization (c) Unscented 

Transformation 
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scente Kalman Filter is an extension of the unscented transformation. 

variables:  
 

⎣
⎢

⎡

⎦
⎥

⎤x

xn
k ⎣

⎢

⎡

⎦
⎥

⎤x

nk

(3.40) 

 
The effective dim L x

Lv + Ln, where Lx is the original state dimension, Lv is the process noise dimension and Ln 

The Un
The random variable is redefined as the conc

d 
atenation of the original state and noise 

 xa
k  =  ⎢

⎢
⎢

⎥
⎥
⎥k

xv
k  = ⎢

⎢
⎢

⎥
⎥
⎥k

vk       

x

ension of this augmented state random variable is now = L  + 

is the observation noise dimension. 
The UKF equations are given below: 
 

Initialization : 
x0 = E [x0]         (3.41) 

 

P0 = E [(x0 − E[x0]) (x0 − E[x  T
0]) ]     (3.42) 

 

x0  = E[ ] = [xa xT 0 0]T      (3.43) 

[(x0
a − 

 

P0 = E x0
a) (x0

a − x0
a) T] = ⎢⎢

⎢

⎥
⎥
⎥P  0  0

0  Rv  0   (3.44) 

 Rv and Rn are the process and observation noise covariances. By augm
state random variable with the noise random variables, we take the uncertainty in the 
noise random variable the r a r the ring the 
sigma-point propagat lo namics 
and observations to be captured with the same level of accuracy as with which we treat 

ly models the noise RV’s using their expected values, 
 is

 
1. Calculate sigma points : 
 

k-1

⎡ ⎤0

⎣
⎢

⎦
⎥0  0  Rn

 
enting the 

s into account in  same manne s we do fo state du
ion. This al ws for the effect of the noise on the system dy

the state. In contrast, the EKF simp
which for zero-mean G ussa ian noise  equal to 0. 

X a  = [ xk-1
a    xk-1

a + γ Pa
k-1     xk-1

a + γ Pa
k-1 ]  (3.45) 

 

2. Time-update equations: 
 

X xk|k-1 = F (X xk|k-1, uk−1, X  vk-1)     (3.46) 
 

xk
−

2L
W X

 

 = ∑
0

i
(m) x

i,k|k-1      (3.47) 
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P−k  = ∑
2L

Wi
(c)  ( Xx

i,k|k-1 − xk 
−) ( Xx

i,k|k-1 − xk 
−)T  (3.48) 

0

 

3. Measurement update equations 
   

    (3.49) 
 

Yk|k−1 = H(Xx
i,k|k-1,Xn

k-1)   
 

y k
− = ∑

0

2L
Wi

(m) Yi,k|k-1       (3.50)  

P ỹk ỹk =  ∑W
0

2L
i
(c) (Yi,k|k-1 − y k

− ) (Yi,k|k-1 − y k
− ) T  (3.51) 

 

P xk yk =  ∑
0

2L
Wi

(c) (Xi,k|k-1 − xk
− ) (Yi,k|k-1 − y k

− ) T   (3.52) 

 

Kk = PxkykP ỹk ỹk
−1       (3.53) 

 

xk  =  xk
− + Kk (y k − y k

−)      (3.54) 

 
Pk = Pk

− Kk P ỹk ỹ
T      

k Kk  
 
Parameters:  
 

 (3.55)

 xa = [ xT  vT  nT ]T ,  

Xa = [ (Xx)T (Xv)T (Xn)T ]T,  
 

γ = L + λ 
where γ is a composite scaling parameter and λ = α2(L + κ) − L; L is the dimension of the 
augmented states, Rv is the process-noise covariance, Rn is the o serb vation-noise 

 
Another way to approxim , 

excepting the Taylor’  
uses a finite number l a  

ation formula that uses central divided differences is Sterling’s 
olation formula, which for the scalar 2nd order case is given by: 

 

=  
2!

covariance, and Wi are the weights as calculated in Eq. 3.39. 
 
3.5. Central Difference Kalman Filter (CDKF) 

ate a nonlinear function over a certain interval
 series expansion, is to make use of an interpolation formula thats

 of functiona  evalu tions instead of analytical derivatives. One
particular type of interpol
polynomial interp

g(x)  g( x ) + D˜∆xg + 1  D˜²
∆xg    (3.56) 
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where D˜∆xg and D˜²
∆  

acting on g(x). For the scalar case, these are given by: 
 

2h

xg are the first and second order central divided difference operators

D˜∆xg = (x − x ) g( x  + h) − g( x − h)   (3.57) 

D˜²
∆xg = (x − x)2  g( x  + h) + g( x − h) − 2g( x )

h²
   (3.58) 

 

here w h is the interval length or central difference step size and x is the prior mean of x 
around which the expansion is done. So we can interpret the Sterling interpolation 
formula as a Taylor series where the analytical derivatives are replaced by central divided 
differences. For Gaussian random variables the optimal value is thus h = 3. 
 The weighted sigma-point set used by Sterling’s interpolation formula (2L+1 
points, where L is the dimension of x) given by the prior mean plus/minus the columns 

r ix square-root of the prior covariance matrix is: 

9) 

 (h

(o rows) of the scaled matr
  

Xo =  x        (3.5
 

Xi  =  x  + Px)i i=1,…,L    (3.60) 
 

Xi   =  x  −  (h Px)i  i=L+1,…,2L    (3.61) 
 

The weights are: 

−L
 

W o (m) =  h²
h²

      (3.62) 

2h²

 

W iI (m)  =  1  
 

 
²

 i=1,…,L    (3.63) 

   W i (c1)  =  1
4h

)  i=1,…,L    (3.63) 
 

   W   =  −
4h4

(c2) h² 1
i )  i=1,…,L    (3.64) 

 The central di
Sterling interpolation for posterior statistics approximation, to the recursive Kalman filter 
framework. The comp

 
fference Kalman filter (CDKF) is a straightforward application of 

lete CDKF algorithm that updates the mean xk and covariance Pxk 
of the Gaussian approximation to the posterior distribution of the states is described 
below: 
 
• Initialization:   

x0 0 x0 0 = E [ 0 0 0 ]  

   

n = E[n]  Rn = E[(n − E[n]) (n − E[n])T ]  (3.67) 
 

x ]  P  = E [(x  − E[x ]) (x  − E[x ]) T (3.65) 

v = E[v]  Rv = E[(v − E[v]) (v − E[v])T ]  (3.66) 
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• For k = 1, . . . ,∞ : 

: 
 

1. Calculate sigma points for time-update
 

   xk-1
av= [ xk-1

av   v

   v  =
⎦
⎥0 Rv
      (3.69) 

 

X vk-1 = [ 

 ]      (3.68) 

 

Pa ⎢
⎡

⎥
⎤Px k-1 0

k-1   
⎣
⎢

a xk-1
av   x av

k-1  + h P vk-1     xk-1  − h ava P vk-1 ]  (3.70) 

2. Time-update equations: 
 

x  ( x   v , 1)      (3.71) 

a

 

X k|k-1 = f X k-1, X k-1  uk−
 

xk
− = ∑

2L
Wi

(m) Xx
i,k|k-1      (3.72) 

0

 

P−xk  Xx
L+i,k|k-1)² +   

( x
i,k|k-1  + Xx

L+i,k|k-1 −2 Xx
0,k|k-1)²]  (3.73) 

3. Calculate sigma points for measurement-update: 
 

 = ∑
2L

[Wi
(c1)  ( Xx

i,k|k-1 −
0
  Wi i

(c2)  X
 

an  = [ x−   xk-1 k−1 n ]      (3.74) 

⎣ ⎦0 Rn

 

   Pank|k-1  =  ⎢
⎢
⎡

⎥
⎥
⎤P−xk 0
      (3.75) 

 

X ank|k-1 = [ xk|k-1
an   xk-1

an + h Pank|k-1     xk-1
an − h Pank|k-1 ] (3.76) 

 

4. Measurement-update equations: 
    

Yk|k−1 = h (Xx n
k|k-1, Xk|k-1)       (3.77) 

 

y k
− = ∑

0

2L
Wi

(m) Yi,k|k-1       (3.78)  

P ỹk =  ∑
1

2L
[Wi

(c1) (Yi,k|k-1 − YL+i,k|k-1 )² +  
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    Wi
(c2) (Yi,k|k-1 + YL+i,k|k-1 −2 Y0,k|k-1  )²]  (3.79) 

 

P   xk yk =  W1 Pxk  [Y1:L,k|k-1 − YL+1:2L,k|k-1 ) T  (3.80) (c1) −

 

Kk = PxkykP ỹk 
−1      (3.81) 

 

xk  =  xk
− + Kk (y k − y k

−)      (3.82) 

 
Pxk = Pxk

−  −  Kk P ỹk Kk
T      (3.83) 

 
Parameters:   xav = [ xT  vT ]T ,  
 

Xav = [ (Xx)T (Xv)T ]T,  
 

an T T T 

 ≥ 1 is

or random variable. As 
a minimal requirement the sigma-point set must completely capture the first and second 
order moments of the prior random variable. Higher order moments can be captured, if so 
desired, at the cost of using more sigma-points. 

2. The sigma-points are then propagated through the true nonlinear function using 
functional evaluations alone (no analytical derivatives are used) in order to generate a 
posterior sigma-point set. 

3. The posterior statistics are calculated (approximated) using tractable functions 
of the propagated sigma-points and weights. 
 

Both CDKF and UKF perform equally well with negligible difference in 
estimation accuracy. Both generate estimates however that are clearly superior to those 
calculated by an EKF. The performance similarity of the UKF and CDKF is clearly 
demonstrated on nonlinear time-series estimation problem [2]. However, there is one 
advantage the CDKF has over the UKF: The CDKF uses only a single scalar scaling 
parameter, the central difference interval size h, as opposed to the three (α, κ, β) that the 
UKF uses. Once again this parameter determines the spread of the sigma-points around 

x  = [ x  n  ] ,  
 

Xan = [ (Xx)T (Xn)T ]T,  
 

h  the scalar central difference step size, L is the dimension of the augmented states, 
Rv is the process-noise covariance, Rn is the observation-noise covariance, and Wi are the 
weights 

 
 

Rudolph van der Merwe [2] proved that both approaches (Scalar Unscented 
Transformation and Sterling approximation) can be summarized by three main steps - 
denoted as the sigma-point approach - for the approximating the statistics of a random 
variable that undergoes a nonlinear transformation: 

 
1. A set of weighted sigma-points are deterministically calculated using the mean 

and square-root decomposition of the covariance matrix of the pri
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the prior mean. The 
variable. For Gaussia

optimal setting for h is equal to the kurtosis of the prior random 
n random variables the optimal value is thus h = 3. 

nted Kalman Filter (SRUKF) and Square-Root 
an Filter (SRCDKF) 

 the most costly operations in the SPKF is the calculation of the matrix 

Due to numerical stability (especially during the state 
covariance up re-
root forms of both the UKF and the CDKF[5, 6]

 form, using the sigma-
oint pproa gebra techniques: QR 

pivot based least squares. For 
implem quare-root unscented Kalman filter and the 
square- tational cost for certain 

ynamic state space models and an increased numerical stability.  

 
 
3.6. Square-Root Unsce
Central Difference Kalm
 

One of
square-root of the state covariance at each time step in order to form the sigma-point set. 

 this and the need for more 
date), R. van der Merwe and A. Wan derived numerically efficient squa

. These forms propagate and update the 
square-root of the state covariance directly in Cholesky factored
p a ch the following three powerful linear al
decomposition, Cholesky factor updating and efficient 

entation details, see [4, 5, 6]. The s
root central difference Kalman filter give a reduced compu

d
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Chapter 4 
 

Part
Summary 

4.1. Generic Particle Filter 

4.1.2. Re-sampling and Sample Depletion 

.2. S ma-p icle Filter
4.3. Gaussian Mix t Particle Filter 

MC) based method that allows 
plete repr portance 

sampling and re-sam e b n 

The working mechanism llowing: The state space is 
partitioned as many parts, in  to some probability 
measure. The higher probability, the denser th
system evolves along ording to the state equation, with
density function (pdf) determined by the FPK equation. Since the pdf can be 

 sampling of the state space, we 
f. However, since the posterior 

 
icle Filters  

4.1.1. Monte Carlo approximation and sequential importance 
sampling 

  
  4.1.3. The Particle Filter Algorithm 

4 ig oint Part   
ture Sigma-Poin

 
 

4.1. Generic Particle Filter 
 

The particle filter is a sequential Monte Carlo (S
for a com esentation of the state distribution using sequential im

pling. It is a sophisticated model estimation techniqu ased o
simulation. The particle filters are usually used to estimate Bayesian models and are the 
sequential analogue of Markov chain Monte Carlo (MCMC) batch methods. Whereas the 
standard EKF and the sigma-point filters, presented in the previous chapter, make a 
Gaussian assumption to simplify the optimal recursive Bayesian estimation, particle 
filters make no assumptions on the form of the probability densities in question, that is 
full nonlinear, non-Gaussian estimation. 

 of particle filters is fo
 which the particles are filled according

e particles are concentrated. The particle 
 the time acc  evolving probability 

approximated by the point-mass histogram, by random
et a number of particles representing the evolving pdg

density model is unknown or hard to sample, we would rather choose another distribution 
for the sake of efficient sampling. 
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4.1.1. Monte Carlo approxim and sequential importance sampling 
 

Monte Carlo simulation with sequential importance 

arlo method that represents a distribution p(x) 
by an empirical approximation based on a set of weighted samples (particles) 

i=1
    (4.1) 

 

ation 

Particle filtering is based on 
sampling (SIS). The overall goal is to directly implement optimal Bayesian estimation by 
recursively approximating the complete posterior state density.  

Importance sampling is a Monte-C

 

p(x) ≈  ∑
N

w(i) δ(x − x(i)) 

where δ is the Dirac delta function, and the weighted sample set, {w(l), x(i); l = 1 . . .N} are 
drawn from some related, easy-to-sample-from proposal distribution π(x). The weights 
are given by: 
 
    w(i) = p(x(i))/ π (x(i))

 ∑
i=1

N
p(x(i))/ π (x(i))  

      (4.2) 

 

Given this, any estimate of the system such as Ep[g(x)] = ∫ g(x)p(x)dx can be 
approx

 from the proposal distribution and evaluate the likelihood p(yk|xk) and transition 
probabilities p(xk|xk−1), all we need to do is generate a prior set of samples and iteratively 

edure then allows us to evaluate the 
ate: 

imated by Ê[g(x)] =  w(i)g(X(i)) [7]. Using the first order Markov nature of the 
dynamic state space model and the conditional independence of the observations given 
the state, a recursive update formula (implicitly a nonlinear measurement update) for the 
importance weights can be derived [7]. This is given by: 
 

w(i)
k  = w(i)

k−1p(yk|xk)p(xk|xk−1)/ π (xk|Xk−1, Yk)  for xk = x(i) (4.3) 
 

Equation (4.3) provides a mechanism to sequentially update the importance weights 
given an appropriate choice of proposal distribution, π (xk|Xk−1, Yk). Since it is possible to 
sample

compute the importance weights.  This proc
expectations of interest by the following estim
 

E [g(xk)] ≈  ∑
∑

∑
= =

N
i

k

i

kN
i

N

i

i
k

i
k

xgw
wN

xgwN
)(

)(~

)(

1

)()(

)(
/1

)(/1
  (4.4) 

=i
k

1

=i 1

where the normalized importance weights are given by: 
 

   ∑
=

This estimate asympt wk 
cludes the support 

f the r filtering density 
mated arbitrarily well by the point-mass estimate: 

=
N

j

j

k
i

k

i

k www
1

)(~
)(

)(~
/       (4.5) 

otically converges if the expectation and variance of g (xk) and 
exist and are bounded, and if the support of the proposal distribution in

posterior distribution. Thus, as N tends to infinity, the posterioo
function can be approxi
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^
p (xk|Yk) =∑

=

−
N

i
kk

i

k xxw )(
)(~

)(δ     (4.6) 

These point-m istribution arbitrarily well, 
limited only 
importa et. 

 
 

 
The se esented above has a 

serious limitation:
time. Typically, after a few iterations, one of

 whi to zero. A large number of samples are thus 
because their importance weights b e 

numerically in  m
be used to eli
high importance weights. Usually either sampling-importance re-sampling (SIR) or 
residual re-sampling is used. More theore nd implementation detail on re-sampling 
are given in [7

After t
marginally acc
favours the cr  
up hav
childre
severe  procedure, such as a single 

selection step without af e validity of the 
in 8]. 

 

 
or the implementation, the choice of the proposal distribution π (xk|Xk−1, Yk) is 

the mo

 

This represents the true conditional state density given the previous state history and all 
observations. Sampling from this is impractical for arbitrary densities; consequently the 
transition prior is the most popular choice of proposal distribution [7]: 
 

π (xk|Xk−1, Yk) chosen as = p (xk|xk−1)   (4.8) 
 

 The algorithm for the generic particle filter is described above: 
 

1. Initialization: k=0 
o For i = 1. . . N, draw (sample) particle x0

(i) from the prior p(x0). 

i 1
 

ass estimates can approximate any general d
by the number of particles used and how well the above mentioned 

nce sampling conditions are m

4.1.2. Re-sampling and Sample Depletion 

quential importance sampling (SIS) algorithm pr
 the variance of the importance weights increases stochastically over 

 the normalized importance weights tends to 
1, le the remaining weights tend 
effectively removed from the sample set ecom

significant. To avoid this degeneracy, a re-sampling or selection stage ay 
minate samples with low importance weights and multiply samples with 

tical a
]. 
he selection/re-sampling step at time k, we obtain N particles distributed 
ording approximately to the posterior distribution. Since the selection step 
ation of multiple copies of the “fittest” particles, many particles may ende

ing no children (Ni = 0), whereas others might end up having a large number of 
n, the extreme case being Ni = N for a particular value i. In this case, there is a 
depletion of samples. Therefore, and additional

Markov Chain Monte Carlo step, is often required to introduce sample variety after the 
fecting th approximation they infer. More details 

 

4.1.3. The Particle Filter Algorithm 

F
st critical design issue. The optimal proposal distribution (which minimizes the 

variance on the importance weights) is given by: 
 

π (xk|Xk−1, Yk) = p (xk|Xk−1, Yk)    (4.7) 

 52



Hedge funds – need of new methods for clustering and filtering? 
Daria BATIU – September 2007

 

2. For k = 1, 2 . . . 
 

(a) Importance sampling step 
• For i = 1. . . N, sample x (i)k  ~ π (xk | x (i)k-1, Yk) 
• For i = 1. . . N, evaluate the importance weights up to a normalizing 

constant: 
 

   
|)Y ,x|(x 

))p(xx|p(y
k

)(
1-k

)(
k

)(
k

)(
kk)(

1

)(

ii

ii
i

k

i

k ww
π−=     (4.9) 

• For i = 1. . . N, normalize the importance weights: 

 ∑
=

=
N

j

j

k
i

k

i

k www
1

)(~
)(

)(~
/       (4.10) 

  (b) Selection step (re-sampling) 

• Multiply/suppress samples x (i)
k  with high/low importance weights 

)(~ i

kw to 
obtain N   random samples approximately distributed according to 
p(xk|Yk). 

• For i = 1. . . N, set 
N

ww i
k

i

k
1)(

)(~
==  

• (optional) Do a single MCMC (Markov chain Monte Carlo) move step to 
add further ’variety’ to the particle set without changing their distribution. 
 

(c) Output: The output of the algorithm is a set of samples that can be used to 
approximate the posterior distribution as follows:  
 

p (xk|Yk) =
^

∑
=

−
i

i
kk xx

N 1

)( )(δ      (4.11) 

he system state can be calculated: 

N1

 

From these samples, any estimate of t
 

^
kx = E[xk|Yk] = ∑

=

weights when their likelihood is evaluated. 
 

N

i

i

kx
N 1

)(1      (4.12) 
 

 
The effectiveness of this approximation depends on how close the proposal 

distribution is to the true posterior distribution. If there is not sufficient overlap, only a 
few particles will have significant importance 
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Fig.3: Schematic diagram of a generic particle filter (SIR-PF) 

 
 

4.2. Sigma-point Particle Filter 
 

An improvement in the choice of proposal distribution over the simple transition 
prior, which also address the problem of sample depletion, can be accomplished by 
moving the particles towards the regions of high likelihood, based on the most recent 
observation yk. 

An effective approach to accomplish this is to use an EKF generated Gaussian 
approximation to the optimal proposal: 

 

π (xk|xk−1, Yk) chosen as = qN (xk|Yk)    (4.13) 
 

which is accomplished by using a separate EKF to generate and propagate a Gaussian 
proposal distribution for each particle: 
 

qN (xk|Yk) = N ( xk; xk, P(i)
k  )   i = 1, 2, . . .N   (4.14) 

 

At tim pute the mean and 
covariance of the importance distribution for each particle from the previous time step k 
− 1. Next, the i-th particle is redrawn (at time k) from this new updated distribution. 
While still making a Gaussian assumption, the approach provides a better approximation 

e k one uses the EKF equations, with the new data, to com
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to the optimal cond
performance on a num

itional proposal distribution and has been shown to improve 
ber of applications [15]. 

y replacing the EKF with a sigma-point Kalman filter (UKF, CDKF, SRUKF, 
ore accurately propagate the mean and covariance of the Gaussian 

bution. Distributions generated by the SPKF will have a 
 true posterior distribution than the overlap achieved by 

ates. In addition, scaling parameters used for sigma point selection can be 
apture certain characteristic of the prior distribution. The new filter that 

sults from using a SPKF for proposal distribution generation within a particle filter 
gma-Point Particle Filter (SPPF). See for implementation 

details 

ed to use a large number of particles for accurate and robust 
peration, which often make their use computationally expensive. They suffer from an 

en

B
SRCDKF), we can m
approximation to the state distri
greater support overlap with the
the EKF estim
optimized to c
re
framework is called the Si

[38, 42]. 
 
 

4.3. Gaussian Mixture Sigma-Point Particle Filter 
 
Particle filters ne

o
ailm t called “sample depletion” that can cause the sample based posterior 
approximation to collapse over time to a few samples. This problem can be addressed by 
moving particles to areas of high likelihood through the use of a SPKF generated 
proposal distribution. Although the SPPF has large estimation performance benefits over 
the standard PF, it still remains heavy to compute since it has to run a SPKF for each 
particle in the posterior state distribution. 

The Gaussian Mixture Sigma-Point Particle Filter (GMSPPF) [19] has equal or 
better estimation performance when compared to standard particle filters and the SPPF, at 
a largely reduced computational cost. The GMSPPF combines an importance sampling 
(IS) based measurement update step with a SPKF based Gaussian sum filter for the time-
update and proposal density generation. The GMSPPF uses a finite Gaussian mixture 
model (GMM) representation of the posterior filtering density, which is recovered from 
the weighted posterior particle set of the IS based measurement update stage, by means of 
a Expectation-Maximization (EM) step. The EM step either follows directly after the re-
sampling stage of the particle filter, or it can completely replace that stage if a weighted 
EM algorithm is used. The EM or WEM recovered GMM posterior further mitigates the 
“sample depletion” problem through its inherent “kernel smoothing” nature. 
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Chapter 5 
 

Wavelet analysis  
Summary 
 

5.1. Introduction 
5.2. Overview of the wavelet transform 
5.3. Wavelets in finance, economics and soft-computing 

 
 
5.1. Introduction 
 

Wavelet analysis is a relatively new tool in the field of applied mathematics. 
Daubechies (1992), Chui (1992) and Graps (1995) provide the fundamentals of the 
wavelet theory. Wavelet analysis provides the opportunity to make semi-parametric 
estimations of highly complex structures without knowing the underlying functional 
form. Wavelet analysis had its impact on the area of signal processing, data compression 
and image analysis. The impact on signal processing was reviewed by Donoho (1995). 
Walker (2000) provides a primer on wavelets and their use in these applications of signal 
processing, image analysis and data compression. 

not know the exact time-
equency representation he bands of frequencies 
ssociated with the time intervals in the signal. Here we have to have a requirement on 

the width of the window function. The wavelet transformation is a solution to the 
problem.  

Wavelet analysis, in contrast to Fourier analysis, gives insight in local behaviour, 
whereas Fourier analysis gives insight in global behaviour. The Fourier transforms 
processes time-series by transforming the signal from the time domain into the frequency 
domain. The new processed signal provides insight in the amount of frequencies and the 
amount of energy in each frequency existing in this time-series. However, local effects 
are only visible in the time domain and not in the frequency domain. If the signal is 
stationary, we don’t need the “location” information, but in the real world most of our 
data sets are non-stationary.  

The Windowed Fourier Transform (WFT) can locate the window of the data that 
are transformed in time.

 
The WFT only transforms part of a signal and that segment of 

signal is small enough that we can assume that portion of signal is stationary. By using a 
particular window function and shifting the window along the time dimension of the 
signal we can localize the frequency in the signal, and we obtain a time-frequency 
representation of the signal. The transformation coefficients are the amplitudes of 
different frequencies at different times. But WFT has a problem, known as the resolution 
problem. The Heisenberg uncertainty principle states that we can

of a signal. We can know however tfr
a

 56



Hedge funds – need of new methods for clustering and filtering? 
Daria BATIU – September 2007

Wavelet analysis makes use of a fully scalable window, which is shifted along the 
signal in order to capture local behaviour in the time domain. This process is rep
several times with different window-sizes, with a collection of time-frequency 

entations of the signal as a result. The transformation of the signal into the sev
resulting wavelet coefficients, which provide information at different scales, is m

ten referred to as time-scale decomposition. However, as there is no direct connection 
between the Fourier frequency parameter and the Wavelet parameter, the term

ed for wavelet analysis, whereas the term frequency is preserved for Fourier 
analysis. The use of wavelet analysis enables the analysis of non-stationary data,

tion in time and time-scale decomposition, which proved to be usef
analysis of economic and financial data (Ramsey 1999). 

The Continuous Wavelet Transform (CWT) uses a particular wavelet wavefor
which has some required or desired properties, as does the window function (which 
applies the same logic as WFT). There are two main differences between WT and W

eated 

repres eral 
ore 

of
 scale is 

preserv
 

localiza ul in the 

m, 

FT. 

ikes in the decomposed signal. Second, the most significant characteristic of a 
articular CWT is the width of the window, which is changed for different frequencies. 
s we noted for CWT, the windowed signal multiplied with window function is then 

te transformation and contains 
ighly redundant information.  

quency band. Each 
frequency is localized in a particular place in the time domain, according to that band’s 
resolution.  

 

First, in CWT we use a wavelet to replace the cosine in WFT, which will give us many 
sp
p
A
continuously integrable across time. That is not a discre
h

The Discrete Wavelet Transform (DWT) reduces the signal sample by a factor of 
two each time according to Nyquist’s rule, and then decomposes (resolves) the signal at 
different frequency bands with different resolution for each fre

 
Fig. 4: Wavelet and Fourier transform 
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Fig. 5: Left: Shifing a wavelet along the signal. Right: Shifting a wavelet function in time 

 
A time signal, f(t) wit ) 

can be

k
dJ-1,k ΨJ-1,k(t) + ... + ∑d1,k Ψ1,k(t) 

d k ranges from 1 to the number 
f coefficients  The coefficients are the w m 

coefficients gi

    s ≈  

 
 
5.2. Overview of the wavelet transforms 

h finite energy in the space of all integrable functions, L2(R
 approximated and represented using a wavelet transform by projecting the 

function onto the translated and dilated father and mother wavelets. 
 

φj,k(t) = 2-j/2φ(2-jt – k)     (5.1) 
 

where j, k ∈ Z = {0,±1,±2,....} 
 

Ψj,k(t) = 2-j/2Ψ (2-jt – k)    (5.2) 
 

where j, k ∈ Z = {0,±1,±2,....} 
 

Father wavelets, denoted by φ, are used to represent the smooth and low 
frequency portions of the function while mother wavelets, denoted by Ψ , describe the 
details or high frequency components of  the function. 

The wavelet representation of the function, f(t) is defined as: 
 

f(t) = ∑sJ,k φJ,k(t) + ∑dJ,k ΨJ,k(t) + ∑sJ-1,k φJ-1,k(t) + ∑
k k k k

           (5.3) 
 

where J is the number of multi resolution components an
o  in the specific component. avelet transfor

ven by the projections: 

J,k  ∫ φJ,k(t) f(t) dt     (5.4) 
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    ≈ ∫ ΨJ,k(t) f(t) dt     (5.5) 

 

wavelet unction to the total original function. 
The equations described above form the basis for the continuous wavelet 

transform. However, this form of wavelet analysis is known to be highly redundant (since 
it effectively expands a one dimensional time series into a two dimensional time-scale 
space, we would expect the resulting data to be rank deficient). A more efficient 
implementation should be able to represent all the information of a function using a 
minimu ber of wavelet coefficients through critical sampling. This type of wavelet 
transform is known as the discrete wavelet transform, and is both practical and adequate 
in most cases especially for input data that is discretely sampled.  
 

Consider x to be a vector of observations of dyadic length (n=2J). Discrete 
wavelet transform maps a signal to a J+1 vectors of n wavelet coefficients w = (w1, w2, 
w3, w4, … , wn)T. 

 

w = Wx       (5.6) 
 

The matrix W is composed of the wavelet and scaling filter coefficients. In 
practice, a pair of high put signal, x. Both the 
filter outputs are then sub-sampled to half th r original lengths. The sub-sampled outputs 
from the high pass filter are kept as detailed coefficients while the filtering operation is 

peated for the sub-sampled output from the low pass filter. The whole process is 
cients are 

xtracted. The resulting vector w contains the detailed coefficients (dJ,k, dJ-1,k, ... d1,k) and 
smooth

presentation of the original signal or function. The number of 
coeffic

dJ,k 

where j = 1,2,3……,J (3) 
 
The magnitude of these coefficients actually reflects the significance of the corresponding 

 f

m num

pass and low pass filters are used to filter in
ei

re
repeated until the Jth iteration where the Jth order detailed and smooth coeffi
e

 coefficients (sJ,k). The smooth coefficients describe the underlying smooth 
behavior of the signal at coarse level 2J while the detailed coefficients describe the 
deviations from the smooth behavior at different scales. By ensuring critical sampling and 
orthogonality, the minimum number of wavelet coefficients is retained to while 
preserving a perfect re

ients at different scales is related to the width of the wavelet functions. For 
example, at scale 2, the translation steps are 2k, and so n/2 terms are required in order for 
the function Ψ1,k to cover the interval of 1<t<n. By similar reasoning, a summation 
involving ΨJ,k  and φJ,k  will only require n/2j terms. 

The wavelet transform thus decomposes the input into orthogonal components at 
different scales and translations. Consider a input signal f(t), the multi resolution 
decomposition of the signal can be defined as following: 
 

f(t) = SJ(t) + DJ(t) + ……. + D2(t) + D1(t)    
 (5.7) 

  

Sj(t) = ∑
k

sJ,k φJ,k(t)      (5.8) 
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Dj(t) = ∑
k

dJ,k ΨJ,k(t)      (5.9) 

for j = 1,2, ….J 
 

Sj(t) are called the smooth signal or approximation signal while Dj(t) is known as the 
detailed signals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Multi level decomposition of input  
 
 

 

5.3. Wavelets in finance, economics and soft-computing 
 

Wavelets theory has developed into a methodology for financial analysis, and 
wavelet analysis has been applied to a lot of situations, and most of them have had 
favourable results. Wavelet analysis has remarkable impact on many fields, mainly on 
mathematics, signal processing, image analysis, data compression, geophysics, numerical 
analysis, and statistics. 

Wavelets applications in finance can be grouped into three categories. The first 
category is that wavelets methods are used to study the non-stationary property of 
financial time series; associated topics include structure change, local stationary and 
long-memory process. The second category is that wavelet methods provide alternatives 
for forecasting. Wavelets applications in statistics, discussed above, closely relates to the 
above two categories, which are technically oriented. The third category is more oriented 
by the financial theories; they concern how wavelets decompositions can be used to 
improve the hypothesis testing on exiting theories and also can provide insights of 
financial phenomena and enhance the development of theories. Next is a brief literature 
review of wavelets in finance. 

Mark Jensen’s article (Jensen 1997) is an introduction to application of wavelets 
to finance. In this article he discussed the advantages of using wavelets to deal with high 
frequency irregular spaced financial data. In a series of his papers ((Jensen 1999), (Jensen 
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2000), and (Jensen 2001)) on using wavelets of analysis long-memory process, he 
develop

w a certain threshold and finally reconstructing the original signal 
with th

 the individual forecasts. 
ussem and Murtagh (1997) used neural networks to examine the individual coefficients. 

ximated variables in the target function was 
sed for the final forecast. In the area of finance, multi-resolution analysis appears useful, 

as diffe
daily, w nthly. The shorter the time-period, the higher the frequency. Different 
types o

 effective Holder exponent to examine 
the cor locally at arbitrary positions and 
resolut

return ent alternative. 
Similar to other researches in the field of finance and economics, they applied wavelet-
based time-scale decomposition to investigate whether there are changes in behavior for 
different frequencies. The research indicated that the effect of the market return on an 
individual asset’s return will be greater in the higher frequencies than in the lower.  

ed several methods to estimate the fractional differencing parameter in 
autoregressive, fractionally integrated, moving average model (ARFIMA). Based on his 
wavelet OLS estimator, Tkacz (Tkacz 2000) studied the order of integration of interest 
rates for U. S. and Canada, and find that most rates are mean-reverting in the very long 
run, with the fractional order of integration increasing with the term to maturity. 

Ramsey (1999) gives an overview of the contribution of wavelets to the analysis 
of economic and financial data. The ability to represent highly complex structures 
without knowing the underlying functional form proved to be a great benefit for the 
analysis of these time-series. In addition, wavelets facilitate the precise location of 
discontinuities and the isolation of shocks. Furthermore, the process of smoothing found 
in the time-scale decomposition facilitates the reduction of noise in the original signal, by 
first decomposing the signal into the wavelet components, then eliminating all values 
with a magnitude belo

e inverse wavelet transform (Walker 2000).  
Ramsey and Lampart (1998) used wavelet analysis for time-scale decomposition. 

They researched both the relationships between consumption and income and money and 
GDP. The time-scale decomposition yielded a new transformed signal built up from the 
several wavelet coefficients representing the several scales. At each scale, a regression 
was made between the two variables. This research yielded three conclusions: First, the 
relationship between economic variables varies across different scales. Second, the 
decomposition resolved anomalies from the literature. Third, the research made clear that 
the slope relating consumption and income declines with scale. In this context, the role of 
real interest was strong in the consumption-income relation. Chew (2001) researched the 
relationship between money and income, using the same technique of wavelet-based 
time-scale decomposition as Ramsey and Lampart (1998) did. This research yielded a 
greater insight in the money versus income nexus in Germany. Arino (1996) used 
wavelet-based time-scale decomposition for forecasting applications. The approach used 
was to apply forecasting methods on each of the resulted coefficients from the time-scale 
decomposition. After applying forecast methods on each of these coefficients, the final 
forecast of the complete series was obtained by adding up
A
The trained neural network with its appro
u

rent traders view the market with different time resolutions, for example hourly, 
eekly or mo

f traders create the multi-scale dynamics of time-series.  
Struzik (2001) applied the wavelet-based
relation level of the Standard & Poor’s index 
ions (time and scale).  
Norsworty et al. (2000) applied wavelets to analyze the relationship between the 
on an asset and the return on the market portfolio, or investm
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Wavelets are also applied in the area of soft-computing, especially in the area of 

neural networks and fuzzy systems. Tan and Yu (1999) researched the complementarily 
and equivalence relationships between convex fuzzy systems and wavelets. After 
discussing the fundamentals of both fuzzy- and wavelet systems, the authors conclude 
that there is a complementarily relationship. As a result, fuzzy systems and wavelets can 
be combined together, to represent linguistic and numerical knowledge. In the case of 
function approximation, a fuzzy quantization and fuzzy rules can be constructed to 
effectively represent the function. In addition, wavelets can be used for further 
improvement of the approximation accuracy, by capturing the fine features. Furthermore, 
there is equivalence between multi-scale fuzzy systems and wavelets. This means that 
any result obtained from a multi-scale fuzzy approximation, can have its direct 
interpretation in an equivalent wavelet approximation. Fuzzy rules can be generated from 
wavelet coefficients. 

Hoa, Zhang and Xu (2001) proposed a fuzzy wavelet network for function 
approximation. Such a FWN is built forth on wavelet neural networks. These networks 
are a combination of feed forward neural networks and wavelets. The main issue here is 
that wavelets are used as the transformation function in the hidden layer, whereas this 
was a sigmoid- or hyperbolic tangent function traditionally. The network is then trained 
by adapting the translation and dilation parameters in the wavelet function, in the variable 
wavelet variant. The FWN consists of four layers: input, fuzzification, inference and 
defuzzification layers. This is inspired by the traditional neuro-fuzzy systems, as 
described in Jang, Sun and Mizutani (1997). However, the difference between the FWN 
and the neuro-fuzzy systems is that the defuzzification-layer is built-up from a number of 
sub-wavelet neural networks, instead of using constants or linear equations. The FWN 
uses both globalized and localized approximation of the function, yielding better local 
accuracy and faster convergence. The input and fuzzification layer of the FWN construct 
the antecedents of the fuzzy rules from the input space. The sub-wavelet neural networks 
create the consequents of these rules, by making linear combinations of a finite set of 
wavelets, based on the same input space. Later on, in the defuzzification, the antecedents 
and consequents are combined to form the final output.  
 
Some advantages using wavelet methods: 
 

• Robustness of procedure (erroneous assumptions) (no parametric tests of 
procedures) 
• Flexibility of regression fit (imprecise model formulations) 
• Ability to handle complex relationships 
• Efficiency of the estimators (few data points) 
• Simplicity of implementation 
• Dealing with non-stationarity of the stochastic innovations that inevitably are 
involved with economic and financial time series. 
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Chapter 6 
 

Clustering methods  
Summ

 6.3.1. Hierarchical clustering methods 

6.3.2.1. K-means clustering method 

 Kessel algorithm 
 
 
 t Analysis 
 ping 

 
 
6.1
 
 
cluster analysis has been done in various fi
em y
discrete erned with the development 
of a
class fi
pertains to a known number 
bservations to one of these groups. In cluster analysis, no assumptions are made 

ber of groups or the group structure. Grouping is based on similarities 

ary 
 

6.1. Introduction 
6.2. Cluster analysis 
 6.2.1. The data 

6.2.1.1. Choice of attributes 
6.2.1.2. Scaling and standardization of attributes 

6.2.2. The clusters – similarities/dissimilarities 
 6.2.3. Cluster partition  

.3. Clustering algorithms 6

 6.3.2. Non-hierarchical clustering methods 

6.3.2.2. Fuzzy C-means clustering method 
6.3.2.3. The Gustafson -

6.4. Validation 
6.5. Visualization 
 6.5.1. Principal Componen
 6.5.2. Sammon map

  6.5.3. Fuzzy Sammon mapping 
  

. Introduction  

The literature on cluster analysis is quite large and diverse. Significant work on 
elds. Cluster analysis has frequently been 

plo ed as a classification tool. Classification is concerned with the identification of 
 categories, whereas structural representation is conc

a f ithful representation of relationships. Cluster analysis is a statistical method of 
i cation, yet it is different from classification. Classification in its purest form 

of groups, and the operational objective is to assign new 
o
concerning the num
or distances (dissimilarities). 
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 Cluster analysis is an exploratory technique in which the information provided by 
rm of relevant attributes is used to come up with a natural grouping of 
 tool of discovery that reveals structure and relations in data. The 

sults 

collection of 
unlabeled data. A loose i ocess of organizing 
objects into groups w  is therefore a 
collection of objects w en them and are “di r” to the objects 
belonging to other clusters

 of the 
h must supply this criterion, in such a way 

 will suit their needs. 

interpretability and usability. 

the analyst in the fo
ata, if any. It is ad

re of a cluster analysis can contribute directly to the development of classification 
schemes. Strictly speaking, a set of results applied only to the sample on which they are 
based; but through appropriate modification, technique employed can be extended to 
describe adequately the properties of other samples and ultimate the parent population. 

Clustering can be considered the most important unsupervised learning problem; 
so, as every other problem of this kind, it deals with finding a structure in a 

defin tion of clustering could be “the pr
hose members are similar in some way”. A cluster
hich are “similar” betwe ssimila

. 
The goal of clustering is to determine the intrinsic grouping in a set of unlabeled 

data. But how to decide what constitutes a good clustering? It can be shown that there is 
no absolute “best” criterion which would be independent of the final aim
clustering. Consequently, it is the user whic
that the result of the clustering

 

The main requirements that a clustering algorithm should satisfy are: 

• scalability; 
• dealing with different types of attributes; 
• discovering clusters with arbitrary shape; 
• minimal requirements for domain knowledge to determine input parameters; 
• ability to deal with noise and outliers; 
• insensitivity to order of input records; 
• 

here are a number of problems with clustering. AmT ong them: 

• current clustering techniques do not address all the requirements adequately (and 
concurrently); 

• dealing with large number of dimensions and large number of data items can be 
problematic because of time complexity; 

• the effectiveness of the method depends on the definition of “distance” (for 
distance-based clustering); 

• if an obvious distance measure doesn’t exist we must “define” it, which is not 
always easy, especially in multi-dimensional spaces; 

• the result of the clustering algorithm (that in many cases can be arbitrary itself) 
can be interpreted in different ways. 

 

6.2. Cluster analysis 
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6.2.1. The data 
 

Clustering techniques can be applied to data that is quantitative (numerical), 
qualitative (categorical), or a mixture of both. The data are typically observations of some 
physical process.  Each observation consists of n measured variables, grouped into an n-
dimensional row vector xk = [xk1, xk2, … , xkn]T ; xk ∈ Rn. A set of N observations is 
denoted by X = {xk|k = 1, 2, … , N}, and is represented as an N x n matrix:   

 

X = 

⎣
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎤x11  x12  …  x1n

 x21  x22  …  x2n
… … … …

 xN1  xN2  …  xNn

   (6.1) 

 

 pattern recognition terminology, the rows of X are called patterns or objects, the 
d the pattern matrix. 

.2.1.1. Choice of attributes 
 

lem will provide misleading 
results.

rest. The 
hilosophy of cluster analysis is based on measuring proximity between data points in a 
ulti-dimensional framework. The type of attribute and the scale of measurement 
fluence the measure of similarity calculated for the data points. Most analysis 

ity of data types, whereas real data sets often have mixed 
ys of handling these three variations in calculating the 

milarity m

In
columns are called the features or attributes, and X is calle

 
6

 This very important step depends on the researcher’s knowledge of the subject 
matter. The data for clustering should be described in terms of their characteristics, 
attributes, class membership, and other such properties. These descriptors collectively are 
the attributes of the problem. Attributes that are highly correlated add little in terms of 
distinguishing the data units. At the same time including attributes that have large 
variations among data units, but are not relevant to the prob

 The choice as to the number of attributes is different for different fields of study. 
Statisticians and social scientists emphasize parsimony and thus seek to minimize the 
number of measures attributes. Proper selection of attributes is a difficult, but important 
task. 
 
6.2.1.2. Scaling and standardization of attributes  
 Once a decision is made as to the number of attributes to be included for 
clustering, the next step is to select the type(s) of attribute to be used. Like being said 
before, the attributes could be quantitative, qualitative or mixed type. The common 
problem in real data is the lack of homogeneity among attributes of inte
p
m
in
techniques assume homogene
ypes. There are various wat

si atrix. 
 Measurement scales could be sequentially ordered as nominal, ordinal, interval 
and ratio, with the progression reflecting increasing information demands for scale 
definition. Nominal and ordinal scales are referred to as qualitative attributes, and interval 
and ratio scales are referred to as quantitative attributes. If the problem at hand has mixed 
data type, one can reduce the quantitative attributes into qualitative attributes by 
dichotomizing the quantitative attributes. This strategy reduces the quantitative variable 
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to the lowest common denominator. The process has the risk of losing information that 
the quantitative attributes may contain. This might be crucial in mathematical terms, but 
loss of information may not be crucial fir clustering purpose. 
 Even after the decision has been made as whether to use mixed data type or to 
convert the attributes into a homogeneous type, there remains the issue of standardisation 
of attributes. There are two main reasons for standardisation a data matrix. First, the units 
of measurement of the attributes can arbitrarily affect the similarities among data points. 

tandardization helps remove the arbitrarily affects. Second, standardization makes 
similarities among data points. If the original data 
ttribute is much greater than the range of other 

ttributes, the attributes with a larger value will carry more weight in determining the 
ilar

.2.2. The clusters – similarities/dissimilarities 

ity measures leads to 
uccessful natural grouping. A basic assumption of all clustering methods is that these 
umerical measures of distance are all comparable to each other. If the similarity for a 

d pair is more similar than the first 
air. There are various ways of handling quantitative, qualitative or mixed type data in 

ire that an 
, means 

par o
num e
belong to several clusters sim

S
attributes contribute more equally to 

atrix, the value of one particular am
a
sim ities among the data points. When this affects the clustering process adversely, the 
attributes should be standardized to remove the effect. 
 

 
6
 

A cluster is a group of objects that are more similar to one another than to 
members of other clusters. The term "similarity" should be understood as mathematical 
similarity, measured in some well-defined sense. In metric spaces, similarity is often 
defined by means of a distance norm. Distance can be measured among the data vectors 
themselves, or as a distance form a data vector to some prototypical object of the cluster. 
The prototypes are usually not known beforehand, and are sought by the clustering 
algorithms simultaneously with the partitioning of the data.  

The measure of similarity is defined for every pair-wise combination of entities to 
be clustered. The measure interacts with the cluster analysis criteria, so that some 
measures give identical results with some criterion and distinctly different with another. 
The combined choice of attributes, data transformation, and similar
s
n
pair is 100 and for another pair it is 70, then the secon
p
calculating the similarity matrix. Romesburg (1988) discusses in detail the various 
resemblance coefficients that can be calculated for the three types of attributes. 
 
 
 
6.2.3. Cluster partition 
 

Since clusters can formally be seen as subsets of the data set, one possible 
classification of clustering methods can be according to whether the subsets are fuzzy or 

requcrisp (hard). Hard clustering methods are based on classical set theory, and 
object either does or does not belong to a cluster. Hard clustering in a data set X

titi ning the data into a specified number of mutually exclusive subsets of X. The 
b r of subsets (clusters) is denoted by c. Fuzzy clustering methods allow objects to 

ultaneously, with different degrees of membership. The data 
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set i
more n
are not assigned membership 
deg s  nature of hard 
partitioning also causes analytical and algorithmic intractability of algorithms based on 
nalytic functional, since these functional are not differentiable. 

6.3. C

 of hierarchical clustering, like the linkage methods and Ward’s 
minimu

no provision for reallocation of objects 
that ma  have been incorrectly grouped at an early stage. For a particular problem, it is 
important to try several clus thods and, within 
different assigning distances (similarities). One sho ly 

 the outcomes of several methods are consistent with one another. 

For a data set of m chical methods described above provide m 
nested classifications ranging from  clusters of one member each, to one cluster of m 
members. Non-hierarchical cl
classification of k clusters, where k is specified
lustering method. The main idea is to choose some initial partition of data units and then 

tter partition. The partitioning techniques differ 
om t

eallocating assignment. In non-hierarchical methods, a set of 
cases is iteratively partitioned to maximize some predefined criterion function. 

al clustering methods: 

ould not be included in another cluster. 

X s thus partitioned into c fuzzy subsets. In many real situations, fuzzy clustering is 
atural than hard clustering, as objects on the boundaries between several classes 
 forced to fully belong to one of the classes, but rather are 

ree  between 0 and 1 indicating their partial memberships. The discrete

a
 

 
lustering algorithms 

 
 Clustering methods can be divided into two main groups: (1) hierarchical 
clustering methods and (2) non-hierarchical clustering methods. 
 
6.3.1. Hierarchical clustering methods 
 
 The hierarchical clustering method can be further divided into two types: (a) 
agglomerative hierarchical methods and (b) divisive hierarchical methods. The first starts 
with a disjoint set of entities and merge them by certain rules into fewer and more 
inclusive clusters, until the formation of a conjoint set. The divisive techniques begin 
with the conjoint set and partition the sample into smaller and smaller subsets. There are 
several methods

m variance method. 
 In hierarchical clustering method, there is 

y
tering me a given method, a couple of 

uld conclude a natural grouping on
if
 
 
6.3.2. Non-hierarchical clustering methods 
 
  entities, the hierar

 m
ustering method is designed to cluster data into a single 

 apriori or is determined as part of the 
c
alter cluster memberships to obtain a be
fr he hierarchical methods in several ways. First, partitioning leads to non-
hierarchical single-rank solutions; second, it allows for correction of poor initial 
clustering, by iteratively r

 There are various methods of non-hierarchic

• Exclusive Clustering - data are grouped in an exclusive way, so that if a certain 
datum belongs to a definite cluster then it c
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• Overlapping Clustering - uses fuzzy sets to cluster data, so that each point may 
ase, 

6.3.2.1. K-means clustering method 

e k clusters) fixed a priori. The main idea 
ter. These centroids should be placed in a 

f different location causes different result. So, the better choice is 
ble far away from each other. The next step is to take each 

hen no point 
e. A this p e 

 step. After we have these k new centroids, a new binding has to be done 
ints and the nearest new centroid. A loop has been 
loop we may notice that the k centroids change their 

location step by step until no m re changes are done. In other words centroids do not 
move any more. 

Finally, this algorithm
squared error function. The objective function is: 

 

belong to two or more clusters with different degrees of membership. In this c
data will be associated to an appropriate membership value. 

• Probabilistic Clustering - use a completely probabilistic approach. 

 

 
This is one of the simplest unsupervised learning algorithms that solve the 

clustering problem. The procedure follows a simple and easy way to classify a given data 
et through a certain number of clusters (assums

is to define k centroids, one for each clus
unning way because oc

to place them as much as possi
point belonging to a given data set and associate it to the nearest centroid. W
s pending, the first step is completed and an early grouping is don t oint wi

need to re-calculate k new centroids as barycentres of the clusters resulting from the 
previous
between the same data set po
enerated. As a result of this g

o

 aims at minimizing an objective function, in this case a 

²
1i Ak i

i

c

k vx∑ ∑
= ∈

−      (6.2) 

 
where Ai is a set of objects (data points) in the i-th cluster and vi is the mean for that 
points over cluster i. Equation (7.2) denotes actually a distance measure between a data 
point xi and the cluster centre vi. In K-means clustering, vi is called the cluster prototypes, 
i.e. the cluster centres: 
 

i

N

k
k

i
N

x
v

i

∑
=

at cluster is minimized. 

 Pla

=
1 , xk ∈ Ai     (6.3) 

 
where Ni is the number of objects in Ai. 
 Each cluster in the partition is defined by its member objects and by its centroid. 

he centroid for each cluster is the point to which the sum of distances from all objects in T
th

The algorithm is composed of the following steps: 

ce K points into the space represented by the objects that are being clustered. 
These points represent initial group centroids. 

•
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• Assign each object to the group that has the closest centroid. 
• When all objects have been assigned, recalculate the positions of the K centroids. 
• Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation 

of the objects into groups from which the metric to be minimized can be calculated. 

 

In a more mathematical form, the K-means clustering algorithm is: 
 

Given the data set X, choose the number of clusters 1 < c < N. Initialize with random 
cluster centres chosen from the data set. 
 
Repeat for l = 1, 2, … 

Step 1 Compu
 

 

that 
cluster. 
 

Step 3 Calculate cluster centres 

 

te the distances 

   D2
ik = (xk – vi)T  (xk – vi), 1<i<c, 1<k<N  (6.4) 

 

Step 2 Select the points for a cluster with the minimal distances, they belong to 

 

i
i N

 

N

k
k

l
x

v

i

∑
=

= 6.5) 1)(       (

until 0max )1()()( ≠−∏= −ln ll vvv    
1=k

i

 

Ending Calculate the partition matrix 
 
Although it can be proved that the procedure will always terminate, the k-means 
algorithm does not necessarily find the most op

 (6.6) 

tres "have no data points". It is recommended to run K-means several 
e

 proper 
are in selecting initial number of clusters, avoiding local minima or misclassification. 

 

 
 
6.3.2.2. Fuzzy C-means clustering method 
 

In the considered k-means procedure, each data point is assumed to be in exactly 
one cluster. We can relax this condition and allow each instance to belong to some cluster 

timal configuration, corresponding to the 
global objective function minimum. The algorithm is also significantly sensitive to the 
initial randomly selected cluster centres because the calculation can run into wrong 

enresults, if the c
times to achiev  the correct results. To avoid the problem described above, the cluster 
centres are initialized with randomly chosen data points. If Dik becomes zero for some xk, 
singularity occurs in the algorithm, so the initializing centres are not exactly the random 
data points, they are just near them. If the initialization problem still occurs for some 
eason, the "lonely" centres are redefined to data points. It is also necessary to taker

c
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with some at a point may 
belong to several clusters with . This idea is used in the 
fuzzy C-means lgorithm but in 
calcu  by the value of 
the membership f
 The fuzzy c- SODATA, was 
originally developed by Dunn [2 ezdek [22], [23]. The set of 
all points co v = 
{v1, v2 . . . , vc}, atrix for c 
clusters and n 

 (6.7) 
 

 
in such a way to 

minimize the objective f
 

 degree, that is introduce a “fuzzy” membership in a cluster, so th
some degree in the range [0, 1]

clustering algorithm. It is based on the k-means a
lating a clauter’s centre the coordinates of each instance are weighed

unction. 
means (FCM) algorithm, also known as fuzzy I

1] and later generalized by B
nsidered is data X = {x1, x2 . . . , xn} and the vector of prototype centres 

 which has to be determined. Therefore, fuzzy partition m
data points is: 

Mfc = {U|µik ∈ [0, 1]; ∑
=

n

k 1

µ ik = 1; 0 <∑
=

n

k 1

µ ik < n } 

where i = 1, 2, . . . , c and k = 1, 2, . . . , n 

The goal of fuzzy c-means algorithm is to select U and v 
unction, called C-means functional. It is defined by Dunn as: 

Jm(X, U, v) = Ai

c

i k

k
m

ik vx ²)(
1 1

)(∑∑
= =

−µ    

] is the weighting exponent determining the fuzziness of the clusters, 
mbership of xk in the cluster I and  

D2
ikA = (xk – vi)T  (xk – vi), 1<i<c, 1<k<N 

easure between the data sample xk and cluster center vi . 
 (7.8) can be seen as a measure of the total variance of x

n of the c-means functional (7.8) represents a nonlinear optim
a variety of available methods. The mo

le Picard iteration through the first-order conditions for 
fuzzy c-means (FCM) algorithm. 

The FCM algorithm computes with the standard Euclidean
induces hyper spherical clusters. Hence it can only detect clusters with the same shape 

becomes zero for some xk, singularity occurs in
ree c

(6.8) 
 

where m ∈ [1,∞ µij is 
the degree of me
 

  (6.9) 
 

is a Euclidean m
 Statistically, k from vi. The 
minimizatio ization problem 
that can be solved by using st popular method is a 
simp stationary points of (7.8), 
known as the 
  distance norm, which 

and orientation. 
  
Notes: If DikA  the algorithm: the 
membership deg he weighting 

arameter (m) is important: as m approaches one from above, the partition becomes hard, 
 it approaches to infinity, the partition becomes maximally fuzzy, i.e.  µ ik = 1/c. 

annot be computed. Also, the correct choice of t
p
if
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gorithm. 

 
The Fu

 

Step 1 Compute the clus

Fig. 7: A flow chart for the fuzzy c-means clustering al
 
 

zzy C-means clustering algorithm is: 
 

Given the data set X, choose the number of clusters 1 < c < N, the weighting exponent m 
> 1, the termination tolerance ε > 0 and the norm-inducing matrix A. Initialize the 
partition matrix randomly, such that U(0) ∈ Mfc. 
 
Repeat for l = 1, 2, … 

ter protot es (means) yp
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Step 2 Compute the distances: 

  D2  = (x  – v )T  A (x  – v ), 1<i<c, 1<k<N  (6.11) 
 
 

Step 3 
 

 

  ik k i k i

Update the partition matrix: 

∑
=

until 
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ε<− − )1()( ll UU       
 

 cluster by means of a Membership 
 this algorithm. To do that, we simply 

son - Kessel algorithm 

algorithm extends the Fuzzy C-means algorithm by 
mploying an adaptive distance norm r to detect clusters with different 

geom m-inducing matrix Ai, 
which yields the following inner-product norm
 

k – vi), 1<i<c, 1<k<N  (6.13) 

The matrices Ai are used as optimization variables in the c-means functional, thus 
 to the local topological structure of the 

ata. Let A denote a c A1, A2 …, Ac). The 
objective functional of the GK algorithm

    

t be directly minimized with respect to Ai, since it is 
linear in Ai. This m all as desired by simply making Ai less 
positiv inite. To obtain a feasible solution e 
usual way of accomplishing this is to constrain th i
Ai to v ptimizing the cluster's shape while 
its volu

  

As already told, data are bound to each
unction, which represents the fuzzy behaviour ofF

have to build an appropriate matrix named U whose factors are numbers between 0 and 1, 
and represent the degree of membership between data and centres of clusters. 
 
6.3.2.3. The Gustaf
 
 Gustafson-Kessel clustering 
e , in orde

etrical shapes in the data set. Each cluster has its own nor
: 

D2
ikA = (xk – vi)T  A (x

 

allowing each cluster to adapt the distance norm
d -tuple of the norm-inducing matrices: A = (

 is defined by: 

Jm(X, U, v, A) = 2
ikAi

1 1

)( D)(∑∑
= =

c

i k

m
ikµ    (6.14) 

This objective function canno
eans that J can be made as sm

e def , Ai must be constrained in some way. Th
e determinant of A . Allowing the matrix 

ary with its determinant fixed corresponds to o
me remains constant: 

 iiA ρ= , ρ > 0      (6.15) 
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where ρ i is fixed for each cluster. 
 o, thi g 
matrix Ai, so they are allowed to adapt the distan

 uses the Mahalanobis distance norm. 

• If there is no prior knowledge, 

S s clustering method forces that each cluster has its own norm inducin
ce norm to the local topological structure 

of the data points. The algorithm
 
 

otes:  N
ρ i is 1 for each cluster, so the GK algorithm can 

es. 
• A numerical drawback o

between the maximal and the minimal eige
covariance matrix is very large, the matrix is nearly singular. Also the 
normalization to a fixed volume fails, as the determinant becomes zero. In this 
case it is useful to constrain the ratio between the maximal and minimal 
eigenvalue, this ratio sh
the β parameter. 

el clustering algorithm is: 

iven the data set X, choose the number of clusters 1 < c < N, the weighting exponent m 
1, th

find only clusters with approximately equal volum
f GK is: When an eigenvalue is zero or when the ratio 

nvalue, i.e. the condition number of the 

ould be sm  some predefined threshold that is in aller than

 

The Gustafson - Kess
 

G
> e termination tolerance ε > 0 and the norm-inducing matrix A. Initialize the 
partition matrix randomly, such that U(0) ∈ Mfc. 
 
Repeat for l = 1, 2, … 
 

Step 1 Calculate the cluster centers 
 

∑ −
N
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i
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Step 2 
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=
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x
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−
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Compute the cluster covariance matrices 

∑
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 a caled identity matrix: 
  

 IFFF n
ii

1

0 )()1( γγ +−=     (6.18) 

 eigenvalues¸ λ
 

Extract
find λi;m
 

λi;max = λij/β; for any j for which  λi;max/ λij > β    (6.19) 

ij and eigenvectors φij ,  
ax = maxj λij and set: 
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truct FRecons
 

Fi = [φi,1 … φi,n] diag(λi;1 … λi;n)[ φi,1 … φi,n]     (6.20) 

Step 3 Com u
 
  
 

 
Step 3 Update 

i by: 
-1

 
p te the distances: 

 D2
ikAi = (xk – vi

(l))T  [(ρi det(Fi))1/nFi
-1] (xk – vi

(l))  (6.21) 

the partition matrix: 
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until 

1

ε<− − )1()( ll UU       
 

6.4. Validation 
 

Cluster validity refers to the problem whether a given fuzzy partition fits to the 
data all. The clustering algorithm always tries to find the best fit for a fixed number of 
clusters and the parameterized cluster shapes. However this does not mean that even the 
best fit is meaningful at all. Either the number of clusters might be wrong or the cluster 
shapes might not correspond to the groups in the data, if the data can be grouped in a 
meaningful way at all. The determination of the optimum number of the clusters is the 
most important problem in the cluster analysis.  

Two main approaches to determining the appropriate number of clusters in data 
can be distinguished: 

 
• Starting with a sufficiently large number of clusters, and successively reducing 

this number by merging clusters that are similar (compatible) with respect to some 
predefined criteria. This approach is called compatible cluster merging. 

 
• Clustering data for different values of c, and using validity measures to assess the 

goodness of the obtained partitions. This can be done in two ways: 
 

o The first approach is to define a validity function which evaluates a 
complete partition. An upper bound for the number of clusters must be 

c∈ {2, 3 …, 
cmax}. for each partition, the validity function provides a value such that 
the results of the analysis can be compared indirectly. We define S as a 
fuzzy clustering validity function for selecting appropriate number of 

estimated (cmax), and the algorithms have to be run with each 

clusters. The number of clusters is determined so that the smaller S means 
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a more compact and separate clustering. The goal should therefore be to 

o The second approach co f a validity function that 

estimated and the cluster analysis has to be carried out for cmax. The 

til there are bad clusters. 

minimize the value of S. A flow chart is shown in Fig. 8. 
 

nsists of the definition o
evaluates individual clusters of a cluster partition. Again, cmax has to be 

resulting clusters are compared to each other on the basis of the validity 
function. Similar clusters are collected in one cluster; very bad clusters are 
eliminated, so the number of clusters is reduced. The procedure can be 
repeated un

 
 

 
e number of clusters. Fig. 8: A flow chart

 

 
Different scalar validity measures have been proposed in the literature and some 

of them are presented below: 

 for the determination of appropriat
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1. Partition Coefficient (PC): measures the amount of "overlapping" between clusters. It 
is defined by Bezdek as follows: 
 

2

1 1
)(1)( ∑∑

= =

=

c

i

N

j
ijN

cPC µ     (6.13) 

 

where µij is the membership of data point j in cluster i. The disadvantage of PC is lack of 
direct connection to some property of the data themselves. The optimal number of cluster 
is at the maximum value. 
 
2. Classification Entropy (CE): it measures the fuzziness of the cluster partition only, 
which is similar to the Partition Coefficient. 
 

)log(1)(
c N

cCE µµ∑∑
1 1

ij
i j

ijN = =

−=    (6.14) 

 
m of compactness and separation of the 

lusters. It is a sum of individual cluster validity measures normalized through division 
by the fuzzy
 

3. Partition Index (SC): is the ratio of the su
c

 cardinality of each cluster. 

∑
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SC is useful when comparing different partitions having e
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qual number of clusters. A 
er value of SC indicates a better partition. 

ontrary of partition index (SC), the separation index 
separation for partition validity. 

low
 
4. Separation Index (S): on the c
ses a minimum-distance u

 

2
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5. Xie and B
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eni's Index (XB): it aims to quantify the ratio of the total variation within 
clusters and the separation of clusters. 
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timal number of clusters should minimize the value of the index. 
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The op
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    (6.17) 
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6. Dun
"compa tering has to be 
rec u
 

n's Index (DI): this index is originally proposed to use at the identification of 
ct and well separated clusters". So the result of the clus

alc lated as it was a hard partition algorithm. 
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The
xpansive as c and N increase. 

 
fying the original Dunn's index was 

similarity function between two 
lusters

 main drawback of Dunn's index is computational since calculating becomes 
computationally very e

7. Alternative Dunn Index (ADI): the aim of modi
at the calculation becomes simpler, when the disth

c  ( ),(min , yxdCjyCix ∈∈ ) is rated in value from beneath by the triangle-non equality: 
 

d(x, y) ≥  | d(y, vj) – d(x, vj)|      (6.19) 
 

where vj is the cluster centre of the j-th cluster. 
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, yxdCyxCk
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The only difference of SC, S and XB is the approach of the separation of clusters. 

n the case of overlapped clus

⎪
⎬
⎫

⎪
⎬
⎫− ),(), vxdv ji

    (6.20) 

ters the values of DI and ADI are not really reliable because 
f re-partitioning the results with the hard partition method. 

6.5. V

dimensional 
sualization of the correlated high-dimensional 

data. The ma
linear data. 

ore on the Sammon mapping method for 
alization of the cluster

it is adapted to non-linear data. This kind of mapping of distances is much closer to the 

 problems with the Sammon mapping application: 
• 

 
dimensionally equal to the examined data points, but they also can be defined as 
geometrical objects, i.e. linear or non-linear subspaces, functions. Sammon 
mapping is a projection method, which is based on the preservation of the 

⎪
⎨

⎪
⎨=

∈∈minmin)( ,cADI jCjxCix ji

⎧ ⎧ (min yd

I
o

 
 

isualization 
 

The clustering-based data mining tools are important, since they are able to 
explore structures and classes in the data. 

he Principal Component Analysis maps the data points into a lower T
space, which is useful in the analysis and vi

in drawback is that it is a linear transformation that is not adapted to non-

 In this paper, the attention is focused m
the visu ing results, because it preserves inter-pattern distances and 

proposition of clustering than simply preserving the variances (like PCA). Anyway, there 
are two

The prototypes of clusters are usually not known apriori, and they are calculated 
along with the partitioning of the data. These prototypes can be vectors
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Euclidian inter-point distance norm, so it c
 calculating with this ty

apping algorithm forces to f

an be only used by clustering 
algorithms pe of distance norm[10],[11]. 

• The Sammon m
points in a  lower  q-dimensional subspace, such these inter-point distances 
correspond to the distances measured in the n-dimensional space. This affects a 
computationally expensive algorithm, since in every iteration step it requires 

 much of the variability in the data as possible, and each succeeding 
uch of the remaining variability as possible. The main 

g variables; 
2. discover or to reduce the dimensionality of the data set. 

The m

 
The Sammon m N points in a q- dimensional 

ind in a high n-dimensional space N 

computation of N (N – 1)/2 distances. 
To avoid these problems a modified Sammon mapping algorithm is used, described in 

detail in section 6.5.3. 
 

6.5.1. Principal Component Analysis 
 

The principal component analysis (PCA) involves a mathematical procedure that 
transforms a number of (possibly) correlated variables into a (smaller) number of 
uncorrelated variables called principal components. The first principal component 
accounts for as
omponent accounts for as mc

objectives of PCA are: 
1. identify new meaningful underlyin

athematical background lies in "eigen analysis": The eigenvector associated with 
the largest eigenvalue has the same direction as the first principal component. The 
eigenvector associated with the second largest eigenvalue determines the direction of the 
second principal component. 
 
6.5.2. Sammon mapping 

apping method is used for finding 
data space, where the original data are from a higher n-dimensional space. The dij = 
d(xi;xj) inter-point distances measured in the n-dimensional space approximate the 
corresponding d*

ij = d*(xi;xj) inter-point distances in the l space. This is 
achieved by minimizing an error criterion, E (called Sammon's stress) [10]:* 

 q-dimensiona
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     (6.21) 

Where 
−

==
1N N

λ  ∑ ∑∑
= +=

<
1 1i ij

ijji ij dd but there is no need to maintain λ for a successful solution 

of the optimization problem, since as a constant, it does not changes the optimization 
result. 

The minimiza io m in the N * q variables yt n of 
i = [yi1,…, yiq]T . At the t-th iter il

 

E is an optimization proble il, i = 1, 
2,…,N  l =  = 1, 2,…,q, as y ation let to be the rating of y  , 
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here α

⎤⎡ ∂ )(tE

  is a nonnegative scalar constant (recommended α ≈0.3 - 0.4), this is the step size 

reach a local minimum in the error surfa
xperiments with different random initializations are necessary. The initialization can be 

. 
To conclude, the Sammon mapping is non-linear projection method, which 

rev
(new points cannot be added to the obtained map without recalculating it) and that it 
operates on all inter-point distances, so the complexity of finding the mapping is very 
high.  
  
 
6.5.3. Fuzzy Samm
 

idered to be important [14]. The modified 
lgo h  c ces, where c represents the number of 

clu
 

i k
kifuzz dvxdE −= ∑∑

= =

µ     (6.23) 

where d(xk; vi) represents the distance between the xk datapoint and the vi cluster centre 
measured in the original n-dimensional space, while ),(**

ikki zydd =  represents the 
Euc projected cluster centre zi and the projected data yk. 

ery cluster is represented 
by a single point, independently to the form of the original cluster prototype, vi. The 
resulted algorithm is sim  Sammon mapping, but in this case, in every 
iteration after the adaptation of the p ta points, the projected cluster centres are 
recalculated based on ed mean formula of the fuzzy clustering algorithms. 

The distances between the projected data and the projected cluster centres are 
based on the norma easures. The membership values of the 
projected data can be lotted based on t the calculation of the 

membership values: 

w
for the gradient search. A drawback of this gradient-descent method is a possibility to 

ce, while searching for the minimum of E, so 
e
estimated based on information which is obtained from the data

eals the structure present in data, but it’s drawbacks are that it lacks generalization 

on mapping 

Avoiding the drawbacks of Sammon's mapping, the modified mapping method 
ng algorithms where only the distance between uses the basic properties of fuzzy clusteri

the data points and the cluster centres are cons
a rit m takes into account only N x distan

sters, weighted by the membership values: 
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This means, in the projected two-dimensional space ev

ilar to the original
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and U* = [ ]*

kiµ  is the partition matrix containing the recalculated memberships. The 
sulted plot will only be an approximation of the original high dimensional clustering in 

 this rating can be evaluated by determining the maximal 
r between the original and the re-calculated membership 

re
two dimensions. The quality of
value of the mean square erro
values: 
 

*UUP −=       (6.25)  
 
The Fuzzy Sammon mapping algorithm is presented below. 
 

1.  data points by yk PCA based projection of xk and compute 
 centres by: 
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the projected cluster

)∑
N

m y(µ

)∑
N

m
i

(µ

==
k

k
ki

z 1     

=k
ki

1

 (6.26) 

and compute se of these projected points D* = 
 

the distances with the u
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Chapter 7

ests and results 

7.1 n
7.2 ware 
7.3. Description of data sets 

7.5

g the clustering methods 
.1.1.1. Artificial generated data 

e data 
al number of clusters 

ificial generated data 
  7.5.1.2.2. Real life data 

.1. Introduction  
 

er 2 explained the characteristics and strategies of the hedge funds and the 
various

filtering. Chapter 
 discusses a popular numerical approximation technique - Monte Carlo approximation 

rticle filters. 
hapter 5 explained the fundamentals of wavelet analysis and the basis for time-scale 

decomp

 1.2.x 
• Data + Filtering  → Result 2 

 

 
T
Summary 

. I troduction 

. Hardware and soft

7.4. Methodology 
. Simulations 

7.5.1. Clustering 
7.5.1.1. Comparin

7.5
  7.5.1.1.2. Real lif

7.5.1.2. Optim
  7.5.1.2.1. Art

7.5.2. Filtering 
 
 
7

Chapt
 studies existent in the literature. In chapter 3 the approximate Bayesian estimation 

theory is systematically investigated. Following the simplest case, the celebrated Kalman 
filter is briefly derived, followed by the discussion of optimal nonlinear 
4
and sequential sampling method - which results in various forms of pa
C

osition. In chapter 6 the cluster analysis techniques are presented; here were given 
different methods of clustering, which will be used in this chapter during the experiments, 
in order to compare, group and find structures in the various models for the hedge funds 
returns. 

This chapter begins with an overview of the hard- and software used in the 
experiments. In addition, a detailed description of the dataset is given. Then, 
methodology used for the experiments and their results are explained.  

The simulations and their results are divided into two main groups:  
• Data + Clustering → Result 1 

o Artificial data + Clustering → Result 1.1.x 
o Real life data + Clustering → Result
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o Artificial data + Filtering → Result 2.1.x 
 

 Matlab 6.5 Release 13, 

• REB
• Optimization Toolbox 2.2, 

 and a real-

actor

ars earlier, but introduced short selling, leverage and 
erivatives – three important techniques employed by hedge funds - into their model. The 

resulting factor equat h
om risk exposure to the risk factors of various asset classes. Adding alpha to the 

equation, it allows us s: 
 

7.2. Hardware and software 
 

The hardware used for the experiments is a personal computer with the following 
specifications: 

• Toshiba Satellite M40  – Technologie Mobile Intel Centrino – Processeur 
Intel Pentium 1.73 GHz, 

• 1 GB memory, 
• 80GB Hard-Disk, 
 

The software used for the experiments is the following: 
• Microsoft Windows XP operating system, 
• Microsoft Excel 2003, 
•
• Fuzzy clustering Toolbox, 

EL Toolkit, 

• Statistics toolbox 4.0, 
• Wavelet Toolbox 2.2. 

 
For more details, see Appendix. 

 
7.3. Description of data sets 
 

asets were used for the empirical analysis: an artificial datasetTwo dat
life dataset.  

Before explaining the method used for generating of the artificial dataset, the 
Sharpe’s approach and some economical background must be presented. This will be 
helpful for understanding the process of obtaining the artificial returns.  
 
F  models for hedge fund strategies: Revisiting Sharpe’s approach 
 

In 1992 W. Sharpe introduced a unifying framework for such style models in an 
effort to describe active management strategies in equity mutual funds. In his model, he 
describes a certain active investment style as a linear combination of a set of asset class 
indices. In other words, an active investment strategy is a linear combination of passive, 
i.e. long-only, buy-and-hold, strategies. Fung and Hsieh were the first to extend Sharpe’s 
model to hedge funds in 1997. They employed techniques similar to those Sharpe had 
applied to mutual funds five ye
d

ion would account for all edge fund return variation that derives 
fr

to decompose hedge fund return a
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H

 
ung and Hsieh identified five risk factors, which they defined as modelling Global 

Macro,

n-linear profiles, they argued, 
cannot 

hese models are unaccounted beta 
rather than alpha. Surely, an incomplete model of systematic risk factors doesn’t mean 

ose additional risk factors do not exist; only that we do not yet know how to model 
la above on hedge fund returns should actually read as follows: 

Hedge fund return = Manager’s alpha + Σ (βi * Factori (modelled)) + Σ (βi * 

erate more sets of artificial data which 
will be

for a short time, from a 
ng term mean. vt and nt are normally distributed random numbers with a mean of zero: 

t ~ N (0, σn
2), nt ~ N (0, σn

2). For economical approach, Ri represent the total returns 
the abnormal returns due to the manager's skill, beta the hedge 
erent risk factors, and Fi the different risk factors, which are 
apter 2.  

edge fund excess return = Manager’s alpha + Σ (βi * Factori ) + random 
fluctuations   (7.1) 

F
 Systematic Trend-Following, Systematic Opportunistic, Value, and Distressed 

Securities. They further argued that hedge fund strategies are highly dynamic and create 
option like non-linear, contingent return profiles. These no

be modelled in simple asset class factor models. As the formula above describes, 
we infer the hedge funds’ alphas by measuring and subtracting out the betas times the 
beta factors. The obtained value of alpha therefore depends on the chosen risk factors. If 
we leave out a relevant factor in the model, the alpha will come out as fictively high. As a 
consequence, some of the returns not accounted for by t

th
them. Therefore the formu
 

Factori (unmodelled ) + random fluctuations (7.2) 
 

As explained before, hedge fund returns can be expressed as the sum of the 
exposure to the market, which is measured by beta β (which is the sum between 
traditional betas - normal returns generated from exposure to rewarded market risk - and 
alternative betas - normal returns generated from exposure to other systematic risks), and 
the abnormal returns, which are defined by alpha. See chapter 2 for more details.  

Sharpe’s coefficient α is linked and correlated to β. The statistical study of 
instability is useful to better select funds; statistical studies and tests do not give a clear-cut 
result for hedge funds. For hedge funds, the β process is usually random walk 
  

In order to analyse the dynamic evolution of hedge funds returns, the exposure 
and hereby the behaviour of hedge fund managers, the Random Coefficient Model with 
time-varying alphas and betas was chosen to gen

 used further on during the experiments. 
 

The Random Coefficient model (RCM) assumes that the state values alpha and 
beta vary randomly around a steady state mean: mean (α) and mean (β). Economically, 
this means that the exposure to the market deviates randomly and 
lo
v
(the rentability), alpha 
unds’ exposure to difff

explained in detail in ch
 

Ri = mean (α) + Σ Fi βi + variance α i * vt   (7.3) 
 

βi =  mean (β) + varianceβi * nt    (7.4) 
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The process of obtaining the artificial returns consists of several steps that will be 
explained further, in sections 7.5.1.1.1 and 7.5.1.2.1. (Artificially generated data used for 
the clustering and filtering experiments). 
 

The real-life dataset is the dataset called returns, and contains real-life 
continuously compounded returns obtained from the TASS and HFR databases (see 
Chapter 2, Appendix 4 and Appendix 5 for more details).  

The TASS database of hedge funds used consists of monthly returns and 
accompanying information for 229 hedge funds. The index starts at 31st December 1992 
and ends the 31st December 2003. The HFR database of hedge funds used consists of 
monthly returns and accompanyi

st
ng information for 268 hedge funds. The index starts at 

1  December 1993 and ends the 31st December 2003. 
 

.4. Methodology 
 

iven data set into subsets, under different initial 
ssumptions. A certain number of simulations and experiments with the proposed models 
n artificially generated data and real-life data from the TASS and HFR hedge fund 

sults and checked whether the models gave an 
e-series. The simulations were divided in 

two ca

age in order to acquire intuition for the theory and to 
conduc is a Matlab 
toolbox designed to facilitate odels. 
ReBEL is developed and maintained by Rudolph van der Merwe. 
 
 
7.5
 
7.5.1.
 

fectiv ifferent data sets 
rtificially generated and real data sets). Section 7.5.1.1 presents the clustering 

algorithms that are compared based on numerical results (validity measures). Section 

3

 
7

For the clustering analysis I chose an appropriate software package in order to 
acquire intuition for the theory and to conduct experiments. The software package used is 
the Fuzzy Clustering and Data Analysis Toolbox, which is a collection of Matlab 
functions. Its purpose is to divide a g
a
o
databases were effectuated. I studied the re
accurate estimation of hedge funds returns tim

 tegories: simple clustering (testing different methods and obtaining the optimal 
number of clusters) and filtering (testing the different algorithms presented in the theory). 
The filtering + clustering approach (in order to analyse how the filtering affects the data, 
if this process affects the initial clusters and if it diminishes the error) will be treated in a 
future work. Each simulation and validity test is repeated a significant number of times in 
order to get a reliable notion of the performance. 

For the Gaussian Approximate Bayesian Estimation – Kalman Filter Framework, I 
chose an appropriate software pack

t experiments. The software package used is the ReBEL toolkit, which 
the sequential estimation in general state space m

. Simulations 

 Clustering 

The aim of these simulations is to present the differences, the usefulness and 
eness of the partitioning clustering algorithms by partitioning def

(a
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7.5
is rarel
and an
sets (T

o classify hedge funds with a unified approach, to find similarities 
 the h e urns evolution during time, and to try to group them together, in 

ertain clusters. The 
sk can be a dominan ’  c
se to  where common factors exist. Detailed 

clas i risk and return characteristics of similar 
funds that face common factors. 
 
 
.5 . ods 

First of all rithm random 
itialization, so different running issues in different partition results, i.e. values of the 

validat
data, and no validity index is perfect by itself for a clustering problem. Several 
xper ent and evaluation are needed. 

 

that the state values alpha (the abnormal 
k 

Ri represent 
e total returns (the rentability) and F  the different risk factors. Economically, this 

mo  
from a 

• 

 Fou  distinguish 4 different hedge funds 
exp rresponds a certain return; 
eac e h mean µ and a standard 
dev hich is the square-root of the 
var at tells you how tightly all the 
various examples are clustered ar

 

.1.2 deals with the problem of finding the optimal number of clusters; this information 
y known apriori. At the beginning some artificially generated data sets are used 
alysed, in order to validate the clustering methods, and afterwards two real data 
ASS and HFR hedge fund databases) are treated.  
The attempt is t
edge funds r tin

c investment process a manager uses to produce returns and manage 
t factor in a fund s risk return profile. The lustering framework is ri

u d  identify groupings or classifications
sif cations are valuable in comparing the 

7
 

.1 1. Comparing the clustering meth

it must be mentioned, that all these algo s use 
in

ion measures. On the other hand the results hardly depend from the structure of the 

ime
 

7.5.1.1.1. Artificial generated data 
 

As explained before, in section 7.3, the model used for the experiments is the 
Random Coefficient model (RCM). It assumes 
returns due to the manager's skill) and beta (the hedge funds’ exposure to different ris
factors) vary randomly around a steady state mean: mean (α) and mean (β). 
th i

del supposes that the exposure to the market deviates randomly and for a short time, 
long term mean.  
 
The process of obtaining the artificial returns consists of several steps: 
 
 

Four curves weighted by a random coefficient are created, in order to simulate 4 
different risk factors:    F1, F2, F3, F4 

 
• r different labels are created, in order to

osures to the different risk factors. To each label co
ith r turn is drawn from a normal distribution w

iation equal to the estimated local volatility - w
iance rate. The standard deviation is a statistic th

ound the mean in a set of data. 
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• Each initially generated curve, corresponding to the different risk factors, is 
multiplied with the corresponding randomly generated beta (the hedge funds’ 
exposure to different risk factors) which varies randomly around a steady state 
mean: mean (β). nt are normally distributed random numbers with a mean of zero 
nt ~ N (0, σn

2) 
 

βj =  mean (β) + varianceβi * nt    (7.5) 

n (α) + Σ Fi βij + 

 
• The sum of these products is computed 

 

Σ Fi βij        (7.6) 
 

• In order to obtain the total return, we compute: 
 

Rij = mea variance α i * vt  (7.7) 
 

where vt are norm an of zero vt ~ N (0, 
σn

2). 
 
 

The experime rd, constant variances for alpha and 
beta, and some predef  factors. Only the standard 
deviations are varying, from . The idea is to present the 

s by 
partitioning our artifi

 
 For the experim rical values: 
 

• 4 in o simulate 

peated 500 times; 
• te the number of 

used consists of monthly returns and 
accomp st December 
1992 and ends the 31 g 10 years, i.e. 120 values); 

• The constant
 

o 
o 
o 
o 
o 
 

• The stand gher values, 
in order to check the robustness of our algorithm

ally distributed random numbers with a me

nts are made supposing standa
ined initial curves for simulating the risk

 lower values, to higher values
differences, the usefulness and effectiveness of the partitioning clustering algorithm

cially generated data sets.  

ents we have chosen the following nume

itial curves weighted by a random coefficient are created, in order t
4 different risk factors; 

• Each curve, corresponding to a certain label, is re
Each curve consists of 120 points, in order to properly simula
returns (the databases of hedge funds 

anying information for 229 hedge funds. The index starts at 31
st December 2003, so durin

 variances for alpha and beta are established at: 

Variance Alpha= [0.5  0  0.2  -0.8]  ; 
Variance Beta (label 1)=[0.05  0.05  0.05  0.0]; 
Variance Beta (label 2)=[0.15  0.0  0.0  0.0]; 
Variance Beta (label 3)=[-0.5  0.0  0.0  0.5]; 
Variance Beta (label 4)=[0.5  0.0  0.0  0.6 ]; 

ard deviation is varied for each experiment, from lower to hi
s. 

 87



Hedge funds – need of new methods for clustering and filtering? 
Daria BATIU – September 2007 

So,

pe of hedge fund return. The predicted attribute for our clustering 
nalysis is the class (or the label). 

 
 
Case1. For the fi
   
        
        
 

coefficient are described. 
Their randoml odel they represent the 

omly coefficient 
 

particular values for the risks. 
 

 to summarize, our artificially generated data set contains 4 classes (which we call 
labels) of 120 instances each; each class is repeated 500 times, where a class refers to a 
certain different ty
a

rst experiment, the following numerical values have been chosen: 

Standard Deviation Alpha = [0.05 0.05 0.05 0.05];   
Standard Deviation Beta (Label 1… Label 4) = 0.05;  

In Fig. 9 the four initial curves weighted by a random 
y evolution during time can be observed. In our m

risk factors that influence and affect our returns. We have used this rand
approach, in order to propose a very robust methodology that is not influenced by some

 

  
 

om generated risk factors (variance of alpha and beta = 0.05) 
 

turns are shown in Fig.10. 
  

Fig.9. Rand

The artificially generated re

 
Fig.10. Total generated return (variance of alpha and beta = 0.05) 
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 means 
clustering algorithm ined, as it can be 
seen in the figure. 
 

In Fig. 11 the result of the Principal Component Projection (PCA) of the K-
 is presented. The four clusters are very well determ

 
 

Fig.11.

 
 

 Result of PCA projection by the generated data set (variance of alpha and beta = 0.05) 
 

 
 
 

In Fig. 12, respectively Fig. 13, are presented the results of the Fuzzy Sammon 
and Sammon mapping for our artificially generated data. 

 
 

 
 

 Result of Fuzzy Sammon projection by the generated data set (variance of alpha and 
beta = 0.05) 

 
 

Fig.12.
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Fig.13. Result of Sammon projection by the generated data set (variance of alpha and beta = 
0.05) 

 
and the parameters of the 

lustering and the visualization functions. It evaluates the projected data. The distances 
betwee

hen new partition matrix, and draws a contour-map by selecting the 
points with the same partitioning values. It calculates the relation-indexes defined on the 
ground of (6.25): 

 
 

A projection evaluation function uses the results 
c

n projected data and projected cluster centres are based on the Euclidean norm, so 
the function calculates only with a 2-by-2 identity matrix, generates the pair-coordinate 
points, calculates t

*UUP −= , E
N

k
k

N

k
k ,,

1

*2

1

2 ∑∑
==

µµ  

al value of the mean square error between th
mbership values (see Fuzzy Sammon mapping): 

   (7.8) 

where  
• P is the maxim e original and the re-

calculated me
*UUP −=  

embership of xk in the cluster I 
mbership values of the projected data. 

r criterion, (called Sammon's stress)  

jected figures are only approximations 
etween the original and the projected partition

• µij are the degree of m
• *

kiµ  are the me
• E is the erro

 
Considering that pro of the real partitioning 

results, the difference b  matrix is also 
represented  the PCA, 
Sammon's m
indexes ) 

 
 
 

, and on the other hand one can observe the difference between
apping and the Modified Sammon Mapping (see Table 3. the relation-
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 P 

∑
=

N

k
k

1

2µ  ∑
=

N

k
k

1

*2µ  

A 0.0161 1.0000 0.9394 

Sammon 0.0202 
 

1.0000 0.9243 

0.0113 
 

1.0000 0.9200 

 
n generated data set (variance of alpha and beta = 0.0

 
 

mmon Mapping has better projec
ponent Analysis, and it is computationa

E 

PC 0.0039 

0.0024 

Fuzzy 
Sammon 

0.0016 

Table3. Relation-indexes o 5) 

  As Table3 shows, Fuzzy Sa tion results by the 
value of P than Principal com lly cheaper than the 
original Sammon Mapping. The original Sammon's stress for all the three techniques is 
calculated, in ord
 
Case2. The num
   

        Standard Deviation Be
 

The simu rical difference consists in the 
greater value for the s how the k-means 
clustering results. 

er to be able to compare them. 

erical values chosen are: 

Standard Deviation Alpha = [0.5 0.5 0.5 0.5];   
ta (Label 1… Label 4) = 0.5;  

lation is effectuated as in Case1. The nume
tandard variations of alpha and beta.  The figures s

 
 

 
 

om generated risk factors (variance of alpha and beta 
 

Fig.14. Rand = 0.5) 
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 Total generated return (variance of alpha and Fig.15. beta = 0.5) 
 

 
 

Fig.16. Result of PCA projection by the generated data set (variance of alpha and beta = 0.5) 
 

 
Fig.17. Result of Sammon projection by the generated data set (variance of alpha and beta = 

0.5) 
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Fig.18. Result of Fuzz nerated data set (variance of alpha and 
 

y Sammon projection by the ge
beta = 0.5) 

 
 

 P 

∑
=

N

k
k

1

2µ  ∑
=

N

k
k

1

*2µ  

0.1538     1.0000     0.5708     

Sammon 0.1658 
 

1.0000 0.5459 

0.1466 
 

1.0000 0.4911 

 
n generated data set (variance of alpha and beta = 0.5)

E 

PCA 0.0311 

0.0202 

Fuzzy 
Sammon 

0.0205 

Table4. Relation-indexes o  

As Table4 shows, Fuzzy Sammon Mapping has better projection results by the 
value of P than P apping. The 
original Sammon' iques is calculated, in order to be able to 
compare them; it can be observed that Sammon and Fuzzy Sammon mapping in this 
particular case give similar results. 

 
 

Case3. The numerical values chosen are: 
   

Standard Deviation Alpha = [1 1 1 1];   
        Standard Deviation Beta (Label 1… Label 4) = 1;  
 

The simulation is effectuated as in the previous examples. The numerical 
difference consists in the greater value for the standard variations of alpha and beta.  The 
figures show the Fuzzy C-means clustering results. 

 

 

rincipal component Analysis and conventional Sammon m
s stress for all the three techn
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 Random generated risk factors (variance of alpha and beta Fig.19. = 1) 
 

 
 

Fig.20. Total generated return (variance of alpha and 
 

beta = 1) 

 
 

Fig.21. Result of PCA projection by the generated data set (variance of alpha and beta = 1) 
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Fig.22. Result of Sammon projection by the generated data set (variance of alpha and beta =1) 
 

 
 

Fig.23. Result of Fuzzy Sammon projection by the generated data set (variance of alpha and 
beta = 1) 

 
 

 P 

∑
=

N

k
k

1

2µ  ∑
=

N

k
k

1

*2µ  
E 

PCA 0.0666 
    

0.7008     0.5352     0.0565 

Sammon 0.0493 
 

0.7008 0.5014 0.0330 

Fuzzy 
Sammon 

0.0073 0.7008 0.4051 0.0636 

 
Table5. Relation-indexes on generated data set (variance of alpha and beta = 1) 
s ing and conventional Sammon mapping 

have better  than Principal component Analysis. The 
A Table5 shows, Fuzzy Sammon mapp

projection results by the value of P 
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obtaine s to 
tional Sammon. 
 
 

Conclusions 
 
It must be underlined that not have always the best 

results. It depends on the underl ring the simulations, for the 
comparison, ma . Fuzzy C-means 
and Gustafson-Kessel re  results of K-
means depend from the initializa rithm is that the 
random  
centers "have no data points". In order to a ns several times 
to achieve the correct results and the clus ith randomly 
chosen data points. 

In this s
visualization of the cl mon mapping 
has pro

 
 

7.5.1.1.2. Real life data 
 
 
 

• HFR database 
 

The Hedge Fund Research (H ies of hedge funds. Some 
of these categories are m nt or a geographic area for 
investment. This classification  categories as shown in Fig. 
3, section 2.4.2. Some
used consists of m ation for 258 hedge funds. The 
index starts at 31st

 

 
 
 
 
 
 

1. K-means clustering algorithm 
 

d values for the Sammon's stress show that the minimum value correspond
conven

 the "advanced" algorithms do 
ying structure of the data. Du

ny independent runs were estimated with each algorithm
turned always with the same minimum, while the

tion.  The main problem of K-means algo
 initialization of centres, because the calculation can run into wrong results, if the

void this problem I run K-mea
ter centres were initialized w

ection only certain results are presented, by matter of space. The 
usters is also very important matter; the fuzzy Sam

ved very good projection results in comparison to the other techniques. 
 
 

FR) has twenty-six categor
erely a type of financial instrume

can be reorganized into eleven
 of the categories have further classification. The HFR database 

onthly returns and accompanying inform
 December 1993 and ends the 31st December 2003. 
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Each point in the figures mbership of the 
fund.  

 

 is coloured according to the style me

 
 

Fig.24. Result of PCA projection by the price returns of HFR database over the results 
obtained with the K- means clustering algorithm 

 
 
 

 
 

Fig.25. Result of conventional Sammon projection by the price returns of HFR database over 
the results obtained with the K- means clustering algorithm 
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 Sammon projection by the price returns of HFR database over the 
results obtained with the (K- means clustering algorithm 

Fig.26. Result of Fuzzy

 

 
 P 

 

∑
=

N

k
k

1

2µ  ∑
=

N

k
k

1

*2µ  
E 

PCA 0.1453 1.0000     0.5414     0.3192 

0.1713 

Fuzzy 
Sammon 

0.4007 

Table6. Relati clustering 

tion results by the 
value of P than the Prin  the results of the 
K-means clustering me e results. 
The original Sammon's stress in order to be able 
to compare them  this particular 
case gives the best results.  

l 
Sammon mapping p s do not have 
always the best results. It depends on the underlying structure of the data. The main 
problem of K-means algorithm is that the random initialization of centres, because the 
calculation can run into wrong results, if the centers "have no data points". In order to 
avoid this problem I run K-means several times to achieve the correct results and the 
cluster centres were initialized with randomly chosen data points. 

 
 
 

    

Sammon 0.1477 
 

1.0000 0.3879 

0.1041 1.0000 0.4014 

 
on-indexes on the price returns of HFR database (K- means 

algorithm) 
 
 

As Table6 shows, the Fuzzy Sammon Mapping has better projec
cipal component Analysis projection applied to
thod and conventional Sammon mapping over the sam

 for all the three techniques is calculated, 
; it can be observed that conventional Sammon mapping in

As it can be noticed (the PCA projection gives better results than the conventiona
rojection), the "advanced" visualization algorithm
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2. Fuzzy C-m
 
 

eans clustering algorithm 

 
 

Fig.27. Result of PCA projection by the price returns of HFR database over the results 
obtained with the Fuzzy C - means clustering algorithm 

 
 
 
 

 

Fig.28. Result of Sammon projection by the price returns of HFR database over the results 
obtained with the Fuzzy C - means clustering algorithm 
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Fig.29. Result of Fuzz ce returns of HFR database over the 
 

 P 

 
y Sammon projection by the pri

results obtained with the Fuzzy C - means clustering algorithm
 
 
 
 

∑
=

N

k
k

1

2
 µ ∑

=

N

k
k

1

*2µ  
E 

PCA 0.1250 
    

0.8500     0.5414     0.3192 

0.1713 

Fuzzy 
Sammon 

0.1013 

Table7. Relati  the results obtained with 

 
 

ection results by the 
value of P than Principal com on mapping. The 
original Sammon'  results. The best 
stable results has the Fu

 
 

 
 
 
 
 
 
3. Gustafson - Kessel clustering algorithm 

Sammon 0.0877 
 

0.8500 0.3879 

0.0041 0.8500 0.4014 

 
on-indexes on the price returns of HFR database over

the Fuzzy C- means clustering algorithm 

 
As Table7 shows, the Fuzzy Sammon Mapping has better proj

ponent Analysis and conventional Samm
s stress for the Fuzzy Sammon Mapping gives the best

zzy C-means clustering for this data set. 
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Fig.30. Result of PCA projection by the pri e returns of HFR database over the results 
obtained with the Gustafson - Kessel - clustering algorithm 

 

c

 
 
 

 

 
 

 
Fig.31. Result of Sammon projection by the price returns of HFR database over the results 

obtained with the Gustafson - Kessel clustering algorithm 
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Fig.32. Result of Fuzzy Sammon projection by the price returns of HFR database over the 
results obtained with the Gustafson - Kessel clustering algorithm

 
 
 

 
 P 

 

∑
=

N

k
k

1

2µ  ∑
=

N

k
k

1

*2µ  
E 

PCA 0.1250 
    

0.8500     0.5414     0.3192 

Sammon 0.877 
 

0.8500 0.3879 

Fuzzy 
Sammon 

0.0041 0.8500 0.4014 

 
Table8. Relation-indexes on the price returns of HFR database (Gustafson - Kes

0.1713 

0.1013 

sel clustering 
hm) 

 

As Table8 shows, Fuzzy Sammon Mapping has better projection results by the 
value of P than Principal component Analysis and conventional Sammon mapping. The 
original Sa mon's stress for all the three techniques is calculated, in order to be able to 
compare them; it can be observed that conventional Sammon mapping gives the best 
results.  

As it can be noticed, the Principal component Analysis and conventional Sammon 
mapping visualization algorithms do not give good results. All depends on the underlying 
structure of the data. The Fuzzy Sammon Mapping instead gives better results. 

 
 
 
 
 

• TASS database 

algorit

 
 

m
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TASS is the inform t Boston 

Tremont Advisers. It has nine categories  
investment styles of hedge base of hedge funds used 
consists of monthly returns and accom
index starts at 31st

The price returns corresponding to  by using the 
indexes given in the TA

 
 

ation and research subsidiary of Credit Suisse Firs
of hedge funds, classified based on the

 fund managers. The TASS data
panying information for 229 hedge funds. The 

 December 1992 and ends the 31st December 2003. 
 each hedge fund are obtained

SS database as following: 

 
K-means clustering algorithm 1. 

 

fund.  
Each point in the figures is coloured according to the style membership of the 
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Fig.33. Result of PCA projection by the price returns of TASS database over the results 
obtained with the K- means clustering algorithm 

 
 

Fig.34. Result of conventional Sammon projection by the price returns of TASS database over 

 
 

the results obtained with the K- means clustering algorithm 
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 Sammon projection by the price returns of TASS database over the 
results obtained with the K- means clustering algorithm 

 P 

Fig.35. Result of Fuzzy

 

∑
=

k
2µ  

N

k 1
∑

=

N

k
*2µ  

E 

0.0628 

Fuzzy 
Sammon 

0.2469 

Table9. Relati clustering 

2. Fuzzy C-m
 
 

k 1
PCA 0.1983 

    
1.0000     0.4892     0.2850 

Sammon 0.1018 
 

1.0000 0.4325 

0.1246 1.0000 0.3309 

 
on-indexes on the price returns of TASS database (K- means 

algorithm) 
 
 

eans clustering algorithm 
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Fig.36. Result of PCA projection by the price returns of TASS database over the results 

 

 

obtained with the Fuzzy C - means clustering algorithm 

 

 
 

Fi rojection by the price returns of TASS database over the results 
y C - means clustering algorithm 

 

g.37. Result of Sammon p
obtained with the Fuzz

 
 

Fig.38. Result of Fuzzy Sammon projection by the price returns of TASS database over the 
results obtained with the Fuzzy C - means clustering algorithm 

 
 

 P 

∑
=

N

k
k

1

2µ  ∑
=

N

k
*2

 
E 

PCA 0.0002 
    

0.6000     0.3000     0.2850 

Sammon 0.0002 
 

0.6000 0.3000 0.0628 

Fuzzy 
Sammon 

0.0001 0.6000 0.3000 0.0763 

k 1
µ

 106



Hedge funds – need of new methods for clustering and filtering? 
Daria BATIU – September 2007 

 
price returns of TASS database (Fuzzy

algorithm) 

7.5.1.2. Optimal number of clusters 

In the course of every partitioning problem the numb
st be given by the user before the calculation, but it is rarely known 

st be searched also with using validity m
lidity measures for each partition. The optim

ined by the point of the extreme of the validation indexes in dependence of the 
er of clusters. The indexes calculated are explained in detail in section 6.4. 

Table10. Relation-indexes on the  C- means clustering 

 
 

 
er of subsets (called the 

clusters) mu apriori, 
in this case it mu easures. The validity function 
provides cluster va al partition can be 
determ
numb

 

• Classification Entropy (CE) 
• Partition Index (SC) 

 are compared to each other on the basis of 
e validity function. Similar clusters are collected in one cluster; very bad clusters are 

elim
minimize the value of 
 
 

 
rder to help 

find the optim re details see section 
 that is why all the 

programme  can be only detected with the 
comparison of re better, when the 
differences between the values 

 During the sim on 7.5.1.1.1 (Artificial generated data), 
the following sets of validity m
 

ase1. This corresponds to Case1 from section 7.5.1.1.1. 

• Partition Coefficient (PC),  

• Separation Index (S) 
• Xie and Beni's Index (XB) 
• Dunn's Index (DI) 
• Alternative Dunn Index (DII). 
 
The number of clusters is determined so that the smaller S means a more compact 

nd separate clustering. The resulting clustersa
th

inated, so the number of clusters is reduced.  The goal should therefore be to 
S. See Figure 5, section 6.4. 

7.5.1.2.1. Artificial generated data - results 

As explained before, the validity measure indexes are calculated in o
al number of clusters for the wanted data set. For mo

6.4 (Validation). No validation index is reliable only by itself;
d indexes are shown, and the optimum

 all the results. The partitions with fewer clusters a
of a validation index are minor. 

ulations described in secti
easures were obtained. 

C
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 clusters - c and the lack of direct co

classification entropy (CE) has the same problems: mo

Fig.42. Values of Partition  (variance of alpha and beta = 

 
The ma fficient (PC) is the monotonic decreasing 

with the number of nnection to the data. The 
notonic increasing with the 

n 
tality with the expected one, knowing that we generated four distinct labels (see section 

.5.1.1.1 – Case 1 for more details). 

number of clusters - c and hardly detectable ection to the data structure. On the score 
f Fig. 42, the optimal number of clusters is 4. However, this result corresponds i

conn
o
to
7
 

 

Fig.43.Values of Partition s Index (variance of 
alpha and beta = 0.05) 

 
 
 

 
Index and Separation Index and Xie and Beni'

In Fig. 43 more informative diagrams are shown: partition index (SC) and 
separation index (S) decreases at the c = 3 point; this shows that the optimal number of 
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clusters is 3. The Xie and Beni’s Index (XB) index reaches this local minimum at c ≈ 5, 
or more.  

Considering different clustering 
methods with the sam al number of clusters to 4, which is 
confirmed by the Dunn's ndex (ADI) too in Fig. 44.  
 
 

 that SC and S are more useful, when comparing 
e c, we chose the optim
 index (DI) and the Alternative Dunn I

 
 

Fig.44. Values of Dunn’s Index and Alternative Dunn Index (variance of alpha and beta = 0.05) 
 
 
 
Case2. This
 

 corresponds to Case2 from section 7.5.1.1.1. 

 
 

lassifiFig.45. Values of Partition Coefficient and C cation Entropy (variance of alpha and beta = 
0.5) 

 The values of the PC and CE from Fig.45 show the value 4 as optimal number of 
e of alpha and beta is equal to 
perly. 

 

clusters for the artificially generated data; where the varianc
0.5. This was the value expected, so the algorithms work pro
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Fig.4
alpha  0.5) 

 Dunn's index (DI). The Alternative Dunn Index (ADI) in 
Fig. 47 gives 4 the optim
 

6.Values of Partition Index and Separation Index and Xie and Beni's Index (variance of 
 and beta =

 
In Fig. 46 there are more informative diagrams: the partition index (SC) and the 

separation index (S) decreases at the c = 3 point; this shows that the optimal number of 
clusters is 3. The Xie and Beni’s Index (XB) varies a lot and it cannot give a proper 
optimal number. In this case, considering that SC and S are more useful, when comparing 
different clustering methods with the same c, we chose the optimal number of clusters to 
3, which is confirmed by the

al number.  

  
 

Fig.47. Values of Dunn’s Index and Alternative Dunn Index (variance of alpha and beta = 
0.5) 

 
 
 

Case3. This corresponds to Case3 from section 7.5.1.1.1. 
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Coefficient and Classification Entropy
beta = 1) 

ain drawback of the partition co

Fig.48. Values of Partition  (variance of alpha and 

 
As seen in Fig.48, the m ficient (PC) is the 

monotonic decreasing with the number of clusters - c and the lack of direct connection to 
the dat

ith the number of clusters - c and hardly detectable connection to the data structure. On 
e score of Fig. 49, we cannot give the exact optimal number of clusters, but we can 

hoose 4 as the suitable one. 

ef

a. The classification entropy (CE) has the same problems: monotonic increasing 
w
th
c

 

Fig.49.Values of Partition s Index (variance of 

 
As shown in Fig.49, the partiti (SC) decreases continuously, and the 

eparation index (S) decreases at the c = 3 point; this shows that the optimal number of 
clusters is 3. The Xie and Beni’s Index (XB) varies a lot and it cannot give a proper 
optimal number; however, in c=4 it reaches the local minimum, so this value can be taken 
as the optimal one. When comparing different clustering methods, we chose the optimal 
number of clusters to be somewhere between 3 and 4, which is confirmed by the 

 
Index and Separation Index and Xie and Beni'

alpha and beta = 1) 

on index 
s
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Alternative Dunn Index (ADI). g. 50 cannot give a proper 
optimal number, so its value 

The more th ore difficult is 
to obtain a single optim

 
 

 The Dunn's index (DI) in Fi
is not taken into account.  

e variances of alpha and beta have higher values, the m
al number of clusters. 

 

Fig.50. Values of Dunn ariance of alpha and beta =  

 
 
7.5.1.2.2. Real life data – results 
 

• 

 
’s Index and Alternative Dunn Index (v

1) 

HFR database 
 

 
Coefficient and Classification Entropy

database 
Fig.51. Values of Partition  for the price returns of HFR 
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Fig.52.Values of Partition Index and Separation Index and Xie and Beni's Index for the price 

returns of HFR database 
 

 
Fig.53. Values of Dunn’s Index and Alternative Dunn Index for the price returns of HFR 

• TASS database 
 

database 

 
Fi 4 ropy for the price returns of TASS g.5 . Values of Partition Coefficient and Classification Ent

database 
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Fig.55.Values of Partition Index and Separation Index and Xie and Beni's Index for the price 

returns of TASS database 
 

 
 

’s Index and Alternative Dunn Index for th
database 

Fig.56. Values of Dunn e price returns of TASS 

7.5
 
 In this sectio  order to show the 
im thods; See section 3 (Gaussian 
Approximate Bayesian Estim r the theory. Several 
filters are applied on so me additive white 
noise. The performa

• Kalman Filter (K
d Kalman Filter (EKF) 

• Central Difference Kalman Filter (CDKF) 
• Square-Root Unscented Kalman Filter (SRUKF) 
• Square-Root Central Difference Kalman Filter (SRCDKF) 

 

 
.2. Filtering 

n the results of several simulations are presented, in
portance and the accuracy of the proposed filtering me

ation – Kalman Filter Framework) fo
me artificially simulated data, corrupted with so

nces of the following filters were evaluated: 
F) 

• Extende
• Unscented Kalman Filter (UKF) 
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A random pted by additive white 
noise. The filtering results are pr

 

ly coefficient time-series is generated and corru
esented in the next figures: 

 
  

Fig.57. Kalm es 
 

an Filter estimation of the artificially generated noisy time-seri

 
  

Fig.58. Extended Kalman Filter estimation of the artificially generated noisy time-series 
 

 
 

Fig.59. Unscented Kalman Filter estimation of the artificially generated noisy time-series 
 

 

 
  
Fig.60.Central Difference Kalman Filter estimation of the artificially generated noisy time-series 
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Fig.61.
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 Square-Root Unscented Kalman Filter estimation of the artificially generated noisy time-

 

 
  

Fig.62. Square-Root Central Difference Kalman Filter estimation of the artificially generated 
noisy time-series 

 
 

 
• kf : Mean square error (MSE) of estimate : 0.99635 
• ekf : Mean square error (MSE) of estimate : 0.99635 
• ukf : Mean square error (MSE) of estimate : 0.61812 
• cdkf : Mean square error (MSE) of estimate : 0.55779 
• srukf : Mean square error (MSE) of estimate : 0.57407 
• srcdkf : Mean square error (MSE) of estimate : 0.55779 
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Chapter 8 
 

Conclusions and future research 
 

This paper tries to give some answers and to propose some solutions to the three 
questions articulated in the introduction.    

Firstly, several types of filtering-analysis are proposed and tested on artificially 
generated data, in order to give an appropriate solution in estimating the hidden hedge 
funds time-series state in a way that minimizes the error. Here the extensions of the 
Kalman filter give much better results. The Kalman filter is a special case of a Bayesian 
filter, giving the optimal solution for linear state and observation equations and Gaussian 
noises. The Extended Kalman Filter (EKF) is a linearization of the Kalman filter for 
nonlinear state and/or observation equations which uses a first-order Taylor expansion. 
Still, it assumes Gaussian noises. In the case of linear equations, the EKF is equivalent to 
the standard Kalman filter. The Unscented Kalman Filter (UKF) is another approach to 
nonlinear systems with Gaussian noises. Unlike EKF, it does not linearize the equations 
and therefore needs no Jacobians, but it approximates the state variable by using an 
unscented transformation to it. Another category of filters are Particle filters and their 
extensions. Whereas the Kalman filter and its extensions make a Gaussian assumption to 
simplify the optimal recursive Bayesian estimation, particle filters make no assumptions 
on the form of the probability densities in question, that is a full nonlinear, non-Gaussian 
estimation; these filters, together with their extensions are very appropriate to “black 
box” systems. This filtering analysis could consist as a challenge in a future work. 

 Secondly, several clustering methods should were described and chosen, in order 
to better distinguish and classify the different hedge funds evolutions in time, based on 
the existent measurements. The K-means and the Fuzzy C-means clustering algorithms 
have been deeply studied, together with some better visualization methods: the Sammon 
and the Fuzzy Sammon mapping which give much better results than the classical method 
– the Principal Component Analysis. 

Of course, the experiments came together with new research questions and the 
short time didn’t allow us to give answers and find the solutions to all these problems. 
The main remaining questions are regarding the clustering efficiency after filtering (in the 
non-linear case), the visualization of the clusters (a financial analysis would be needed), 
the TASS and HFR hedge funds database interpretation (due to their differences in hedge 
funds style).  
 The answer to another question articulated in the introduction remains to be found 
in some future work and research – whether wavelet-analysis could decompose the hedge 
funds returns time-series into multiple levels, such that each level captures specific useful 
information? For the future research I would like to propose the study of a temporal 
cluster analysis framework consisting of three important stages: feature extraction from 
the hedge funds returns time series, dimension reduction of the high-dimensional feature 
sets and clustering of the already-processed feature sets. 
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Appendix 3: Fuzzy clustering Toolbox 
 

 
Ap e
Toolk
 

general els. ReBEL is developed and maintained by Rudolph van der 
erwe [22]. These scripts have been used in the estimation performed in this paper. 
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The fol

at de in their database to one of 17 
os l

 
• 

 

substantially more concentrated than those of traditional stock 

 

 
• 

. A typical investment is to be long the 
convertible bond and short the common stock of the same company. Positions are 

rity as well as the short 
sale of stock, while protecting principal from market moves. 

pendix 
 
Appendix 1: REBEL Toolkit 
Appendix 2: TASS Fund Category Definitions 

p ndix 1: REBEL – Recursive Bayesian Estimation Library – 
it 

ReBEL [11]is a Matlab toolbox designed to facilitate the sequential estimation in 
 state space mod

M

ndix 2: TASS Fund Category Definitions 

lowing is a list of category descriptions, taken directly from TASS documentation, 
fine the criteria used by TASS in assigning funds th

p sib e categories: 

Equity Hedge This directional strategy involves equity-oriented investing on both 
the long and short sides of the market. The objective is not to be market neutral. 
Managers have the ability to shift from value to growth, from small to medium to 
large capitalization stocks, and from a net long position to a net short position. 
Managers may use futures and options to hedge. The focus may be regional, such
as long/short US or European equity, or sector specific, such as long and short 
technology or healthcare stocks. Long/short equity funds tend to build and hold 
portfolios that are 
funds. US equity Hedge, European equity Hedge, Asian equity Hedge and Global 
equity Hedge is the regional Focus. 

• Dedicated Short Seller Short biased managers take short positions in mostly 
equities and derivatives. The short bias of a manager’s portfolio must be 
constantly greater than zero to be classified in this category.  

Fixed Income Directional This directional strategy involves investing in Fixed 
Income markets only on a directional basis. 

 
• Convertible Arbitrage This strategy is identified by hedge investing in the 

convertible securities of a company

designed to generate profits from the fixed income secu
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• 

 significant pending corporate event such 
as a merger, corporate restructuring, liquidation, bankruptcy or reorganization. 
There are three popular sub-categories in event-driven strategies: 

o risk (merger) arbitrage,  
o distressed/high yield securities,  
o regulation D. 

 
• Non Directional/Relative Value This investment strategy is designed to exploit 

equity and/or fixed income market inefficiencies and usually involves being 
simultaneously long and short matched market portfolios of the same size within a 
country. Market neutral portfolios are designed to be either beta or currency 
neutral, or both. 

• Global Macro Global macro managers carry long and short positions in any of 
the world’s major capital or derivative markets. These positions reflect their views 
on overall market direction as influenced by major economic trends and or events. 
The portfolios of these funds can include stocks, bonds, currencies, and 
commodities in the form of cash or derivatives instruments. Most funds invest 
globally in both developed and emerging markets. 

• Global Opportunity Global macro managers carry long and short positions in 
any of the world’s major capital or derivative markets on an opportunistic basis. 
These positions reflect their views on overall market direction as influenced by 
major economic trends and or events. The portfolios of these funds can include 
stocks, bonds, currencies, and commodities in the form of cash or derivatives 
instruments. Most funds invest globally in both developed and emerging markets. 

• Natural Resources This trading strategy has a focus for the natural resources 
around the world. 

• Leveraged Currency This strategy invests in currency markets around the world.  

• Managed Futures This strategy invests in listed financial and commodity futures 
markets and currency markets around the world. The managers are usually 
referred to as Commodity Trading Advisors, or CTAs. Trading disciplines are 
generally systematic or discretionary. Systematic traders tend to use price and 
market specific information (often technical) to make trading decisions, while 
discretionary managers use a judgmental approach. 

• Emerging Markets This strategy involves equity or fixed income investing in 
emerging markets around the world. 

• Property The main focus of the investments is property. 
 

Event Driven This strategy is defined as ‘special situations’ investing designed to 
capture price movement generated by a
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• Fund of Funds A ‘Multi Manager’ fund will employ the services of two or more 
trading advisors or Hedge Funds who will be allocated cash by the Trading 
Manager to trade on behalf of the fund. 
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