
Evaluating the usefulness of USB for real-Evaluating the usefulness of USB for real-
time robotics applicationstime robotics applications

Mihai Pomarlan

Supervisors: Dr. Alin Albu-Schäffer

Prof. Dr. Ing. Ivan Bogdanov

Catedra “Roboţi Industriali”
Universitatea Politehnica Timişoara

Acknowledgements

I would like to take this opportunity to thank several people who have been of great
assistance during the work on this thesis. I thank my supervisors, Prof.-Dr. Ivan
Bogdanov and Dr. Alin Albu-Schäffer, who made this thesis possible in the first
place. To Mr. Klaus Jöhl I owe many thanks for all the help he has provided
throughout the thesis. I would also like to thank Mr. Reintsema Detleff for showing
me an introduction to USB, Mr. Stefan von Dombrovsky for all the support he
provided on the Linux system, and Mr. Carsten Preusche for providing the resources
to do experiments with.

Table of Contents
1 Motivation.. 6
2 The USB communication protocol... 7

2.1 Features overview... 7
2.2 Establishing a connection... 7

2.2.1 Enumeration and descriptors...7
2.2.2 Device classes... 9
2.2.3 Bandwidth negotiation.. 9

2.3 Communication pipes... 9
2.3.1 Endpoints and pipes.. 9
2.3.2 Transfer types.. 10
2.3.3 Transfer acknowledgment... 11
2.3.4 Usage of frames...11

3 The USB device firmware (USBP)...12
3.1 Firmware structure.. 12

3.1.1 File structure..13
3.1.2 Protocol handling.. 14

Limitations...16
Further developments.. 17

3.1.3 Hardware abstraction...19
Hardware bridge.. 20
Performance measurements...21
Hardware portation..22

3.1.4 Configuration.. 23
Callback writing.. 24
Using the SOF and Tx callbacks for data transfers................................... 25
System configuration and integration..26

3.1.5 Classes...27
4 The netX-based ROKVISS joystick... 29

4.1 The netX chip..29
4.1.1 Features overview... 29
4.1.2 EtherCAT.. 29

4.2 The control board..30
4.3 The joystick software.. 31

4.3.1 Functionality..31
The SPI “drivelet”... 31
The system timer... 32
The USB firmware: USBP.. 32
The joystick software...33

4.4 Performance of firmware.. 36
4.5 The joystick demo application.. 37

5 The USB device drivers..40
5.1 USB communication overview... 40
5.2 Windows XP – the HID driver..42

5.2.1 HID class: overview.. 43
5.2.2 Using the HID driver: usbhidio...44

5.2.3 Running a USB communication in Matlab (Windows XP).................. 44
5.2.4 Controlling position from MATLAB via USB..................................... 47

5.3 Linux – libusb... 50
5.3.1 Running a USB communication in Matlab (Linux).............................. 51
5.3.2 Running a USB communication in joystick demo................................ 52

5.4 QNX – usbd.. 54
5.4.1 Running a USB communication on QNX... 55

6 Conclusions.. 62
7 Annexes.. 64

7.1 A1: CD contents..64
7.2 A2: Joystick program.. 64
7.3 A3: Monitoring a motor with the netX... 65
7.4 A4: Flasher App..65
7.5 A5: Testing USB on Windows... 66

7.5.1 A5.1: Joystick_test for Windows.. 66
7.5.2 A5.2: Motor position control in Simulink...66

A5.2.1: Tuning the PI controller..67
7.6 A6: Testing USB on Linux... 67

7.6.1 A6.1: Joystick test for Linux... 67
7.6.2 A6.2: Joystick demo Linux... 67

7.7 A7 Testing USB on QNX... 68

1 Motivation

Readily available in computers today, USB is the bus of choice for a wide range of
peripherals, from keyboards to webcams. Its flexibility and compactness surpasses
that of previous PC interfaces, like the serial and parallel ports. It offers plug-and-play
capability, good data rates, and it is cheap and reliable.

It is also very common in microcontrollers; even low-range, 8-bit controller families
have members with USB hardware on them. USB allows very compact circuit boards
to be designed, as evidenced by the thriving FLASH-stick industry.

However, hard real-time applications are quite rare for USB. Special buses like
SERCOS, Firewire or EtherCAT are more typically employed in such cases. These
either require special, non-common hardware on the computer (SERCOS, Firewire) or
the device side (EtherCAT).

It is therefore interesting to ascertain the usefulness of USB for hard real-time
applications, precisely because a USB connection can be established and maintained
with regular, easily available hardware.

During the first part of this diploma work, a USB peripheral was programmed: the
new ROKVISS force-feedback joystick. This joystick has control electronics that
allows either a USB or an EtherCAT connection to be used. At this point, the USB
connection is operational. A USB firmware was developped for the joystick, however
this firmware is designed to be easily portable both to new hardware platforms and to
new projects. In addition to the joystick's usual functionality, timing has been
implemented, in order to assess the USB communication's performance.

In the second part of the diploma work, the joystick was connected to PCs running
different operating systems. As a measure of communication performance, round-trip
time was monitored in each case. Round-trip is measured by the joystick, between the
moment it prepares some data to be sent to the computer, and the moment it receives a
reply to that particular packet of data.

The operating systems tested were: Windows XP, Linux (regular OSes) and QNX
(real time Operating System). This permits the evaluation of USB communication
both in usual, as well as special real-time setups, and therefore, deciding for what
kinds of applications a USB connection is useful, for example motor control with a
connection to Simulink.

2 The USB communication protocol

This chapter is based on the “Universal Series Bus Specification” document revision
2.0 and is a very succinct presentation of the USB standard. Its purpose is to ease
understanding of the following chapters by introducing some key concepts about
USB.

2.1 Features overview

Some of the more significant features of USB are the following:

– “polled” bus. There are one Host and at most 127 devices on the
bus, and it is the Host that initiates any data transfer, whether
toward or from the Host. All transfers have the Host as one of the
end points[2.1, 2.2].

– is specified for low speed (1.5Mbps max baud rate), full speed
(12Mbps max baud rate) and high speed (480Mbps max baud rate)
connections[2.3].

– can provide power to the devices on the bus[2.3].

– differential data transfer[2.3].

– communication is split in frames, generated each millisecond for
low/full speed devices and 125 microseconds for high speed[2.4].

– cheap and readily available on present-day computers and
microcontrollers.

2.2 Establishing a connection

2.2.1 Enumeration and descriptors

USB is a fundamentally asymmetric bus, in the sense that a very clear distinction is
made between a bus “Host”, which controls all activity on the bus, and the various
USB devices connected to the bus that respond to the Host's requests. On a bus there
must be only one Host[2.2].

When the Host detects that a new device has been connected, it issues a series of
requests toward that device in order to identify it. The device will respond by sending
back descriptors, which are binary sequences describing various aspects of the device
[2.5, 2.6].

A device has therefore a “device descriptor”, which gives information on the
manufacturer of the device and the device type, at least one “configuration” descriptor
that gives information on how much power the device needs, at least one “interface”
descriptor giving information on what kind of connections the device wishes to form
with the Host, each of these connections being associated to an endpoint descriptor.
The descriptors form a kind of hierarchy, in that the device descriptor also provides
the number of configuration descriptors, and each configuration descriptor provides
the number of interface descriptors associated with it[2.6].

Other descriptors may be included depending on the type of device. Optionally, string
descriptors may also be present, allowing a human user easy recognition of the device
and its various functions[2.6].

Once identified, if accepted as correctly functioning, the device is assigned an address
by the Host. A configuration and an interface are selected, and normal communication
can begin[2.7].

Each of the operations mentioned above corresponds to a standard request: GET
DESCRIPTOR, SET ADDRESS, SET CONFIGURATION, SET INTERFACE. All
requests are issued by the Host to a device[2.7].

Fig 2.1 Descriptor hierarchy

On the Host side, once a device is identified, the Host must search for a driver that
will be able to communicate with that device. The search is based on the device's
attributes, for example its Vendor and Product identifiers, or its class[2.5].

2.2.2 Device classes

Either in the device descriptor or in the interface descriptors, the USB device can
signal its belonging to a certain device class. This provides some further information
to the Host about what the device is capable of, what other features may need
configuring, what driver can work with the device[2.8].

Each device or interface class is described by its own standard, which places various
minimal requirements on what a device must be capable of doing and maximum
capability bounds. An exception is a special class, the “Vendor-defined” class, on
which no restriction is made[2.19, 2.20].

Examples of classes are Human Interface Device, which includes mice and keyboards,
and Mass Storage Device, which includes FLASH sticks[2.19].

2.2.3 Bandwidth negotiation

There is a limited amount of bandwidth available on the USB, and all devices present
on the bus must be able to share it. If a new device is connected, and the bandwidth it
requires is more than what is not used by the already connected devices, then the Host
will “refuse” to connect to it[2.9].

Sometimes this may be solved by the device providing several configurations, with
different bandwidth requirements. If one of these requirements can still be
accommodated on the bus, the Host can select it and connection is possible.
Otherwise, the Host prioritizes the connections it already has[2.9].

2.3 Communication pipes

2.3.1 Endpoints and pipes

At the simplest level, a device is, to the Host, “a collection of independent endpoints”.
Each endpoint on a device will correspond, once the device is connected, to a single
communication pipe between Host and device[2.10].

Every device has at least one endpoint, “endpoint 0”, which is used to issue requests

at. This endpoint is bidirectional, because it can accept data from the Host (requests
and parameters) as well as send data back (descriptors, for example)[2.10].

Unless configured as a “control endpoint”, any other endpoint on a device is one-
directional, either IN- it sends data toward the Host- or OUT- it receives data from the
Host. At most, a device can have a total of 31 endpoints, including endpoint 0. Every
control endpoint will actually require using two endpoints for the two directions of
communication[2.10].

Each endpoint, including endpoint 0, has a maximum packet size that gives in bytes
the largest data packet that can be received or sent[2.10].

Endpoints are “logical” entities, that is they do not correspond to some salient
hardware feature like a different cable connection or a different chip (but they do have
different data buffers). Software on the device is responsible with configuring the
endpoints as appropriate, and keep the configuration consistent with what its
descriptors say[2.10]. For example, the same chip can declare itself as having a
modem-like interface with three nonzero endpoints and a speaker-like interface with a
single non-zero endpoint. As long as it implements the interfaces consistently
(switches interfaces exactly as the Host requests), correct communication is possible.

Each endpoint will have at most one data transfer during a USB frame on a full-speed
bus, or at most three on a high-speed one[2.11].

In this document, “endpoint” and “[communication] pipe” will be used
interchangeably.

2.3.2 Transfer types

Besides direction, an endpoint is characterized by the transfer type it uses. The USB
standard distinguishes four types of transfers:

– control: used mainly by endpoint 0, it is the only transfer type with
a data structure imposed by the standard. Requests and responses to
requests are sent via control transfers. They are classified as “non-
periodic” (rare) and can tolerate large latencies (the Host will not
deliver them immediately if other non-bulk transfers are pending).
Limited in transfer size to 8 bytes (low-speed), 16, 32 or 64 bytes
(full and high speed)[2.12].

– bulk: “non-periodic”, not time critical, not limited in size (except
by available bandwidth) transfer. Typically used by printers and
mass storage devices[2.13].

– interrupt: “periodic” (can happen as often as every frame), time
critical (the Host will not postpone it), limited in size to 8 bytes
(low-speed), 64 bytes (full speed) or 1024 bytes (high speed).
Typically used by mice, keyboards or joysticks, may also be useful
to process control applications[2.14].

– isochronous: “periodic”, time critical, not limited in size (except for
available bandwidth). Does not guarantee delivery of data, because
it does not use acknowledgements nor retries. Typical applications
are cameras and speakers[2.15].

2.3.3 Transfer acknowledgment

All transfer types, with the exception of the isochronous one, are ended with an
acknowledgments token. This can either be an ACK (acknowledgment) in case of a
successful transfer, a NAK (not acknowledged) in case of a transient error like a bit
error from noise on the bus, or a STALL in case of a persistent failure[2.16].

Endpoint 0 may issue STALLs to signal that a request is not supported, or that its
parameters are incorrect[2.16].

2.3.4 Usage of frames

A USB frame begins with a special packet, the SOF: start-of-frame. The devices can
track the appearance of the SOF on the bus and use it for various synchronization
purposes. The standard requirement is that the SOF is to be generated at reliable
intervals, which are 1 millisecond for full-speed buses and 125 microseconds for high-
speed ones, with at most 0.05% error[2.17].

Any transfer will happen during the frame time, and any endpoint can only transfer
once per frame (or up to 3 times on a high speed bus). Of the frame time, 90%, or on
high speed buses 80%, is used for “periodic” transfers, the rest is for bulk and control
transfers. In case periodic transfers (interrupt and isochronous) do not fill all the time
allocated to them in a frame, the Host can expand the slot for bulk and control
transfers for that frame[2.18].

3 The USB device firmware (USBP)

Each USB device contains a functional part responsible for monitoring events on the
USB- whether a reset has occurred, or a request from the host is pending, for example-
and notify the device application program of such events. When the application
program on the device wishes to respond, it does so through this functional part: the
USB Logical Device firmware[3.1]. Hierarchically, the USB firmware is situated
above the hardware level, and below the application or operating system running on
the system. It communicates directly with the hardware or through OS functions, if an
OS is present and requires special protocols for hardware access.

In this chapter, the USB device firmware developed in the course of this diploma
work (USBP) is presented. Its structure is shown and argumented for, descriptions of
its features, functionality, and limitations are provided. Special emphasis is given to
its portability between different projects and hardware platforms. USBP was made for
the netX microcontroller because at the time there was no general USB firmware
available for netX. However, it is applicable in embedded projects that use other
microcontrollers than netX, by changing the USB hardware abstraction layer to fit the
new platform. Chapter 4 shows USBP in use in a project and its performance.

3.1 Firmware structure

The firmware needs to implement, at least in part, the USB protocol specification for
USB devices. It also needs to be aware of the project configuration (number and types
of pipes, callbacks to the application etc) as well as monitoring and controlling the
USB hardware.

However, the hardware part is dependent on the platform. The configuration is
dependent on the project. The protocol handling part is, by definition, constant from
project to project and platform, with the exception of the USB device class. Several
device classes are specified by the USB standard[2.19], and it is very uncommon to
have a device that needs all of them. Further, the standard allows a “Vendor-defined”

Fig 3.1 Software hierarcy on the device

class, on which the standard makes no restrictions[2.20].

In light of this, the firmware is split into several parts that each handle a specific facet
of the firmware's functionality: protocol, configuration, class, hardware.

– protocol part: as well as handling the standard requests as defined
by the USB documentation, this part is responsible with providing
most of the interface to the application or operating system. It
defines the USB initialization and USB main functions.

– hardware part: serves as the USB hardware abstraction layer,
enables the protocol part to access the status of the pipes, control
their function, access the data. Optionally, provides performance
measurement functions.

– configuration part: stores callback pointers, descriptors, pipe
settings, declares compile switches.

– class part: implements code for class specific requests, is called by
the protocol part when such requests are issued.

3.1.1 File structure

The diagram below shows an overview of the file structure of the USB device
firmware.

Each part of the firmware is given directories for their specific headers and source
files respectively. Each part also has a central header, and usually it is this header that
is included rather than every header individually. This allows for some changes to the
file structure to happen without changing the include directives in other files.

Fig 3.2 USBP file structure - overview

The files usbp_driver_main.h and usbp_types.h are the files that the application or
upper layer must include in order to use USBP.

The following subsections contain a more detailed description of each of the parts and
their files.

3.1.2 Protocol handling

The USBP_Constants folder contains a set of headers declaring various USB
standard-defined values, for example descriptor types, request identifiers, device and
interface class identifiers, country values etc. One of these files,
usbp_constants_exports.h, contains constants that are visible in the application level.
This is so in order to enable the application to parse request headers, if it wishes to
monitor (via callbacks) some of the USB requests, as well as reactivate pipes for
input/output.

usbp_driver_common.h contains a definition for an internal structure used throughout
USBP to store data about a request.

usbp_types.h is the basic type definition for USBP. It defines integer types according
to their size: for example uint16 is unsigned integer on 16 bits, vint8 is a volatile
signed 8-bit integer. It also defines a callback type for communication events
(transmission or reception). This file might need to be changed on some platforms to
preserve the definitions of the integers consistent with their names, e.g. ensure that
int16 actually has 16 bits.

usbp_driver_main.h is the file that includes all exports of USBP toward the

Fig 3.3 File structure detail: protocol handling

application. In addition to the functions USBP_vInit and USBP_vMain_Function, it
includes exports from the constants folder as well as exports from the hardware
abstraction layer. See the sub chapter on USBP's hardware part for more info about
these exports.

In order to use USBP, the application only needs to include (in this order)
usbp_types.h and usbp_driver_main.h. It must ensure that USBP_vInit() is called
before the USB is used. Afterwards, events on the USB are handled by
USBP_vMain_Function(), which can be called either from a USB interrupt vector, or
in a periodic task (polling).

The next figure illustrates a run of USBP_vMain_Function. It first checks for several
events on the bus (like reset and start of frame). Optionally, it can notify the
application layer of these events.

 Fig 3.4 USBP_vMain_Function: logical diagram

Then it will check for events on pipe 0, the control pipe. If events occurred on this
pipe, it means a request has been issued and must be handled by the appropriate
functions. Optionally, the application is notified of some of the requests, and may
have the possibility to “veto” them (declare that a particular request will not be
serviced). In case that a request passes without veto, and is not found erroneous by
USBP's sanity checking, it is performed. A response is sent to the USB Host to
indicate the request's success or failure.

After finishing pipe 0, every data pipe is checked in turn for communication events.
The application is notified when such an event occurs. Unlike the ones before, these
notifications are not optional.

Performance measurement (described in its own subchapter in “3.1.3: Hardware
Abstraction”) may be done during USBP_vMain_Function.

Note that the USB interrupt is kept disabled for the entire run of
USBP_vMain_Function. Only one instance of this function should run at a time.

Limitations

I modeled the firmware after the HID (human interface device) class, and this is so far
the only class code that is provided. Any request that HID is required to support is
supported by the firmware; requests unsupported by HID are not supported by the
firmware either.

However, not all the limitations of HID apply. The firmware can be operated with
High-Speed USB as long as a special handshake, the PING protocol employed for
Bulk transfers, is not used. Any number and combination of pipes can be used, as
opposed to one IN and at most one OUT as in the case of HID.

Although the class code provided is for an HID, it is possible to specify the device as
a “vendor-class”. I used this approach for connecting on Linux and QNX systems,
because the HID driver on these systems is poorly documented.

Bulk and Isochronous transfers have not yet been tested, however there is nothing in
the structure of the firmware that categorically rejects their use on full speed buses.
On high speed buses, the PING protocol will have to be added for Bulk endpoints.

Only one instance of USBP_vMain_Function may run at any one time. Once started,

USBP_vMain_Function disables the microcontroler's USB interrupt (if interrupt use is
enabled by compile switches), and keeps it disabled for the entire duration of its run,
including application callbacks. Performance measurement functions should be used
to determine if the time spent by USBP_vMain_Function and callbacks is long
enough to threaten system responsiveness to USB.

Finally, access to the control, status, and data buffer bits of the USB hardware must be
synchronous; the USB operations themselves can be asynchronous. This means, for
example, that when the operation to enable a “Tx Ready” bit returns, then the bit is
indeed set even if the transmission itself did not yet occur. This is not normally a
problem on controllers with on-chip USB hardware, but it is an issue to keep in mind
on systems that use an external USB chip.

Further developments

A few directions of improvement stand out:

– adding high speed bus protocol handling (PING for Bulk transfers)

– adding optimization options- for example, some of the currently
supported requests should be made removable via compile
switches, callback arrays do not need a callback for index 0, a
single array is sufficient for both transmission and reception
callbacks etc.

– adding support for several more requests (for example, set
descriptor). Each new request should be added accompanied by a
compile switch that disables it and re-enables the current “request
not supported” code, so that unnecessary request handling code is
not compiled.

– testing bulk and isochronous transfers.

– smoother support of multi-class devices.

Turning this package into a USB host firmware however is not recommended. While a
Host firmware might benefit from a design split into protocol, class, configuration,
hardware parts, the functionality of a Host is very different and requires different
code.

There is no recipe for changing the protocol handling part of the USB firmware
package, but some guidelines are possible to enumerate.

– the file structure should stay close to the present one. In particular,
the split between protocol, class, configuration and hardware
should be kept.

– whenever possible, use the firmware file and include structure to
try to minimize the amount of change that propagates from file to
file.

– additional code should come with compile switches that disable it.

– keep the Hardware Portation and System Configuration and
Integration guidelines up to date.

3.1.3 Hardware abstraction

usbp_controller_hardware.h includes all the hardware abstraction headers. Other files
from USBP include this file, which allows the hardware abstraction headers to change
names.

usbp_ucname_hwaccess.h and usbp_ucname_regdefs.h (where ucname is replaced
with the name of the hardware platform) contain the hardware access and register
declarations respectively.

usbp_hwbridge.h contains declarations for accessing the USB in a special situation-
when the USB hardware is located on an external chip. See the “Hardware bridge”
subchapter, below, for details.

usbp_perfmeas.h declares the performance measurement functions.

usbp_hwexport.h contains declarations of functions that will be visible at the
application level. The hardware abstraction is visible, usually, only to the protocol
part, but there are a few exceptions. Pipe activation and data transfer functions are
visible to the application, to allow fast access to USB data as well as to decide when
and whether a pipe needs reactivation. For the entire run of these functions, the
microcontroller's USB interrupts are disabled. USB interrupt enable/disable functions
are also available to the application, to allow it control over interrupt generation and
servicing (if interrupts are configured as used, via compile switches).

Fig 3.5 File structure detail: hardware access

A c file corresponds to every header, with the exception of usbp_hwexport.h. All
declarations in this file are implemented in usbp_ucname_hwaccess.c.

The contents of any of these files may change during portation from one platform to
another.

At its most simple, the hardware abstraction simply consists of sequences of accesses
to special function registers that control the USB: defining where and what to write or
read. Some other issues related to the hardware abstractions are presented in the
following subsections.

Hardware bridge

Many microcontrollers have embedded USB hardware, and in this case it is usual to
access the USB via special-function registers. However, some controllers do not have
on-chip USB and must rely on an external USB transceiver chip.

Fig 3.6 Accessing the USB hardware in callbacks.

NOTE: USB-to-UART and USB-to-LPT transceivers are NOT what is referred to in
this document as “USB transceivers”. USB-to-UART or -LPT chips act as an already
configured device (they pretend to be a modem or printer respectively), whereas a true
“USB transceiver” contains no device configuration data and relies on its
commanding microcontroller to provide the device configuration.

A true USB-transceiver is connected to the microcontroller typically via an SPI bus.
This bus however is often shared with other resources like DACs or SPI
Flash/EEPROM, and control over it may need an OS driver to ensure no conflicts
appear. The interface between such a driver and the USB device firmware package
can be implemented in the usb_hwbridge.c file and declared in the usb_hwbridge.h
file.

A special requirement placed on the bridge interface is that its operations be
synchronous. That is: when a “read chip buffer”operation returns, the data is
available; when a write operation finishes, the data has arrived at the USB transceiver
chip. Operations that the USB transceiver chip performs (like sending data to the
Host) can be asynchronous.

The bridge interface is only needed if the system uses a USB transceiver chip, or if for
some other reason access to the USB hardware must be performed with the mediation
of the OS. Otherwise, its files can be left empty.

Performance measurements

Useful in the development phase, performance measurement enables the measurement
of the time spent by the USB_vMain_Function in total, as well as the sum of the time
spent in communication and SOF event callbacks.

Fig 3.7 External transceiver chip; firmware uses OS calls to
access the USB.

Performance measurement functions must access some time measurement resource on
the controller, in which case they provide results directly. These results are visible at
the application level, and can be reported by USB transfer. This means that the
performance value received now was valid for the previous run of the
USBP_vMain_Function). This is only an issue on systems using polling, where the
previous run was likely callback-free and therefore not illustrative of a useful load. In
order to prevent loss of callback time measurements, callback performance
monitoring should be enabled and results only kept when callbacks are also activated.

Another strategy is to allow the performance measurement functions to control one or
several IO pins, and then these pins can be monitored by an oscilloscope to ascertain
performance. This has the advantage of being able to show at once, with no USB
communication, the time spent in various parts of the program. It may also provide
very accurate, sub-microsecond resolution, measurements. The disadvantage is the
need for an oscilloscope.

Whatever strategy is used, the semantics of the measurement is as follows: a
measurement is started when USBP_vMain_Function starts, and it will be finished
when USBP_vMain_Function ends. Separately, measurements for time spent in
callbacks (SOF and communication) is added by measurements started and ended
around each callback. The actual time for USBP_vMain_Function is therefore the
total minus the callback time.

The performance measurement functions are only specified as safe to be called the
way they are employed by the USB package. They are not specified to be provided for
the application for general purpose performance measurement, and are not visible at
application level. Measurements should be reported in microseconds or smaller units
of time, if meaningful compared to the measurement resolution.

Hardware portation

The detailed portation procedure is given in the “USB Hardware Portation Guide”. In
brief, it is as follows:

– decide on whether the system needs a bridge interface or not;

Fig 3.8 Performance measurement with internal timers

implement it if it does.
– check consistency of type definitions from usbp_types.h with their

names.
– at the very least, port a core set of functions to the new hardware

(initialisation, status query, reset handling, pipe enabling/disabling,
data access, send empty, send stall, send data package) as well as
all hardware definitions like register addresses and bit masks that
those functions need. This enables a minimal system to be built and
tested; any not-yet implemented functionality should be disabled by
compile switches, or empty functions should be supplied instead.

– (once a running system is obtained with the minimal function set)
port the remaining hardware handling functions (interrupts, SOF
tracking etc); optionally, port performance measurement. Any other
useful register definitions should be added.

3.1.4 Configuration

usbp_config.h gathers all the configuration headers in one file. It is usbp_config.h that
is included by the rest of USBP.

usbp_compile_selection.h contains a set of compile switches that influence what code
gets compiled or leaved out: multiple interface device, interrupt handling, SOF
tracking, which events and requests trigger a notification to the application, which
requests can be vetoed, whether performance measurement is used and whether
callbacks are measured separately, whether to perform index checking when accessing

Fig 3.9 File structure detail: configuration

pipes etc.

usbp_configuration_callbacks.h declares all the used callbacks to the application:
communication event callbacks and, if selected via compile switches, bus event and
request notifications.

usbp_configuration_endpoints.h declares values for configuring the communication
pipes: how many they are, which directions they have, maximum packet size, address
of pipe buffer etc.

usbp_descriptor.h declares the descriptor variables: device, configuration, string, and
any other used descriptor for example HID report.

usbp_configuration_const.h contains declarations that are to be kept unchanged from
project to project.

With the exception of usbp_compile_switches.h, all configuration headers have a
corresponding c-file with implementations of the declared variables and functions.
usbp_configuration_misc.c contains variables for initial interrupt settings and remote
wakeup enabling.

Callback writing

USBP has two types of callbacks: event callbacks and request notifications. Event
callbacks are used for bus and communication events and are functions without
parameters or return values. They simply inform the application that a particular event
occurred.

Request notifications pass several parameters to the application, enabling it to identify
the request. The application can then return a value that, if zero, signals to USBP that
the application wishes to veto this request. The veto will take effect if USBP is
configured to allow it.

Event callbacks can be used to read data from the host (reception callbacks), prepare
new data to send to the host (transmission or SOF callbacks), synchronize the
application to the USB (SOF callback) etc.

Request callbacks can be used to, for example, (re)initialize the data to be sent to the
host after a SET INTERFACE request, or inform the application that it must change
the format of data it sends and expects etc.

During any of these callbacks, the USB interrupt must be kept disabled.

Using the SOF and Tx callbacks for data transfers

Because the SOF will precede any data transfer in a frame, the appearance of a SOF
on the bus is a good time to prepare outgoing data (from device to Host). The old
joystick firmware used this strategy[3.2], and it is particularly useful for devices that
use any transfer type except Bulk or Control, connected to a full speed bus.

The diagram above illustrates a SOF-based data preparation mechanism. Care must be
taken to the fact that the Host may not request data in a frame, for various reasons
(system busy being a very common one). Therefore, new outgoing data must only be
prepared if the old outgoing data was sent. It comes to the Tx callback to notify the
application that, on the next SOF, it should prepare new data. It is possible, when
using this mechanism, to prepare and send data in the same frame.

Fig 3.10 Using the SOF callback to prepare outgoing data

The diagram above illustrates an alternative: preparing the outgoing data on a Tx
callback. This is also workable. However, on full speed buses it has the drawback of
inserting an extra delay in the transmission, as the outgoing data prepared in one
frame must wait at least for the next frame before being sent. Note that the software
running on the device can ignore the SOF, and this strategy will still work. It can
function also on high-speed buses with endpoints sending data several times per
frame.

Bulk and Control transfers may happen at the end of a frame, and these transfers do
not impose any timing on the delivery of data anyway, so which of the two strategies
is used is not an issue with these transfers.

On high-speed buses, if an endpoint must send data more than once in a single frame,
then the SOF-based strategy is not workable on its own. A mix of the two strategies
would probably be optimal.

System configuration and integration

Configuring USBP for a given project consists of writing the appropriate values in
each of the configuration headers and c-files. The detailed step-by-step procedure is
given in the “USBP Configuration and integration” document, but in brief it is as
follows:

– decide which compile switches to enable for a project. Of particular
importance: shall interrupts be used, or multiple interfaces?

– declare (and at application level define) all callbacks that USBP
will use. Communication events must have callbacks on each pipe.
Callbacks on bus events and requests are optional.

– define pipe settings for every interface that the device provides.
Usually only one interface is provided, but this need not be the
case.

Fig 3.11 Using the Tx callback to prepare outgoing data

– write the descriptors (device, configuration, string etc). Some
constants to assist in this process are provided, but this step
requires some familiarity with USB descriptors. See chapter “9.5
Descriptors” of the USB Specification, revision 2.0, for more
information.

– define interrupt settings.

– if necessary, write class code for the project.

– include usbp_types.h and usbp_driver_main.h function and find
insertion points for USBP_vInit and USBP_vMain_Function.
Assuming the hardware abstraction for the platform exists, USBP is
ready.

3.1.5 Classes

usbp_class.h includes all class headers. Other parts of USBP include this header
instead of each class header. this allows for several classes to be defined, as well as
for the class files to change names.

Each class header should have a corresponding c-file. While several classes may
coexist, it is important that one of the class files provide three functions visible in the
rest of USBP:

– USBP_vClass_Init(): initializes the classes, and starts one of them
as the initial class. Called by USBP_vInit.

– USBP_vClass_Handle_Request(): is called by
USBP_vMain_Function when the USB host issues class requests.

– USBP_vClass_Switch(): is called by USBP_vMain_Function when

Fig 3.12 File structure detail: class handling

a SET INTERFACE request occurs, and allows a previous active
class to be replaced by the class of the new interface.

Typically, a device will only have one device class, or one interface class. The class-
specific code may change according to project. Classes may need to define and use
their own application callbacks, configuration variables and compile switches. These
are not included in the USBP Configuration part, but in the classes themselves.

Vendor-class devices can function without any class code (except the three functions
mentioned above, that are used by USBP in other parts; these functions can be left
empty in this case). Currently, only the HID class is (partially but functionally)
implemented.

4 The netX-based ROKVISS joystick

ROKVISS is an experiment run by DLR to test the feasibility of telepresence
solutions for space applications. The experiment consists of “a two joint manipulator
[that] can be operated from the ground by a direct radio link” [4.1]. The human
operator controls the manipulator through DLR’s High Fidelity Force Feedback
Joystick [4.2], referred hereafter in this document as the ROKVISS Joystick.

4.1 The netX chip

Produced by Hilscher, the netX chips are a family of high-end controllers with support
for a multitude of network and communication protocols. At the time of this diploma
work they are relatively new, but promise to be of great use in a large range of
automation and robotics applications. Because of the high integration of the
communication features, the ROKVISS joystick was updated with a new, netX-based
control electronics, as part of a previous diploma work (Matthias Faehse,
“Entwicklung einer Steuerelektronik fur den DLR kraftreflektierenden Joystick”,
February 28, 2007).

4.1.1 Features overview

A summary of the features of netX is given below[4.3]:

– ARM core, running at 200MHz.

– 2/10/100 Mbit/s Ethernet; support for Real-Time Ethernet
protocols: EtherCAT, Ethernet/IP, Powerlink, PROFINET,
SERCOS-III.

– Fieldbus controller, supports PROFIBUS, CAN, Interbus.

– full-speed USB interface, can act as host or device.

– SPI, two quadrature encoders, two AD converter channels on 10
bits with 4 channels each, three-phase PWM

– JTAG interface

– IEEE 1588 compliant system time measuring

4.1.2 EtherCAT

EtherCAT is an Ethernet-based communication protocol that allows good bus
utilization. It uses a Master/Slave principle, where the Master can be any device
capable of Ethernet communication. It sends an Ethernet frame to the first Slave in an
EtherCAT segment, which will react on it, extract and/or insert data, then send it to
the next Slave and so on until the last Slave processes the frame, and it is sent back,
via the first Slave, to the Master[4.4]. The Master can be a PC with an Ethernet card;
the Slaves are controllers with special EtherCAT hardware.

There is an EtherCAT stack provided for netX, and it remains as a future development
to use this stack in a real project, like the ROKVISS joystick. On the Master-side,
several pieces of software tools can be used to sustain EtherCAT communication, for
example the TwinCAT suite from Beckhoff Automation GmbH.

4.2 The control board

Developped by Matthias Faehse during the course of his diploma work [4.5], the
control electronics is built around the netX chip. It has a USB and two Ethernet
connections; additionally, debug via JTAG is provided.

The control electronics board can read the status of several buttons, connected to
digital inputs of the netX. It can measure several voltages with the aid of netX's
ADCs. PWM control is left to a different board. The PWM value is commanded
through a voltage output by a DAC, connected to the netX via SPI. Several digital
outputs are also used to command motor directions. Position is measured through
quadrature encoders. Two motors can be controlled and have their position monitored,
and PWM signals for a third motor are generated.

Fig 4.1 The control electronics; original from [4.5], labels translated

4.3 The joystick software

4.3.1 Functionality
During the course of this diploma work, the software on the old joystick was ported to
the new control electronics. The joystick software is capable to measure the position
of the joystick, send this measurement back via USB, and relay torque commands to
the motors. In addition to the old functionality, round-trip time measurement and
performance measurement for the USB firmware is provided.

To fulfill its functions, the joystick software needs to work with several hardware
modules inside the netX: GPIO, ADC, quadrature encoder interface, SPI, USB and
system timer. The first three of these have been developed during Matthias Faehse's
thesis, the others have been developped for this diploma work and will subsequently
be presented.

The SPI “drivelet”

Because of the large code overhead, the SPI driver that comes with the rcX operating
system was avoided, and instead a much more limited (but for the purpose of this
application, sufficient) driver was made.

The “drivelet” will only send data on SPI, since the DAC only needs to receive data
from the netX, it does not need to send data back. No interrupts are used, active delays
(about 25 microseconds) ensure that enough time is given for the SPI transmission. A
general purpose I/O pin from the netX, connected to the DAC, is briefly set to 0 to
signal the DAC that a new conversion must be made.

An issue with the netX SPI cell is that data must be byte-swapped before sending on
the SPI. A sample macro for byte swapping is given below:

Fig 4.2 Commanding a voltage output via the DAC

#define ByteSwap(intVal) (((intVal&0xFF)<<8) | ((intVal>>8)&0xFF))

netX has said that this feature of the SPI will NOT be changed, because several
applications have already been built that use byte-swapping.

The system timer

netX provides a counter that is incremented each 10 nanoseconds. It allows measuring
the system time with this resolution; with the “seconds” and “nanoseconds” registers
giving the full system time[4.6].

Getting the counter value is straightfoward, the registers simply need to be read: the
“seconds” register must be read first. Since the counter runs authomatically, no
initialisation or reactivation is necessary.

The system timer was used both for round-trip time and performance measuring. The
time elapsed between two reads of the system timer can be calculated by simply
substracting the values obtained at the two reads. Note that the “nanoseconds” register
counts to a billion and then resets to 0.

The USB firmware: USBP

The netX joystick is the first project where USBP was deployed. While the general
characteristics of USBP were discussed in their own sections, this chapter will
overview the specific hardware platform and configuration aspects.

netX has an internal “On-the-Go” USB controller, which means that it can act as
either a Host or a device. For the joystick software, only device functionality was
needed. The USB controller being internal, no special protocol is needed to access it.
Therefore, the “hardware bridge” part of USBP is left empty.

Full-speed USB operation is guaranteed, and up to 8 pipes can be configured.
Accessing the pipe configuration bits requires first setting a pipe index value in a
“pipe selection” register; it is not the case that each pipe has separate registers. Pipes
do however have different data buffers, which are visible as RAM memory areas.

The hardware abstraction level of USBP for netX was developped using the “netX
Program Reference Guide”[4.7], and in general the USB controller performs as

expected. The only problem is that if a USB connection between netX and the PC
exists when the netX is reset, then after the reset completes netX will not re-establish
the connection. This is a hardware issue[4.8], and the work-around is to break and
replug netX after a reset. Another solution is to connect the USB data lines to pull-ups
controlled by netX's GPIOs [4.8], but this option is not available on the joystick's
control electronics.

The configuration part of USBP was tailored for the application: two communication
(for transmission and reception respectvely), SOF and SET CONFIGURATION
callbacks were defined. Endpoint settings were selected: pipe directions, packet sizes,
transfer types. Descriptors were written to declare the device as an HID, for
connection to a Windows system. The interface class in the descriptors was later
changed to Vendor for connections to Linux/QNX.

The joystick software

A logical diagram of the joystick software is given below.

The main function simply initializes the various parts (USB, encoders etc), and then
enters an endless loop where the USB is polled. If a SOF event occurred, and the
previous transmission was completed, a new packet of data is prepared. A
transmission even triggers the Tx callback, which is used to flag transmissions as
completed. A reception event triggers the RxCallback function, which will read and
then dispatch to the motors the commands sent by the PC. Loop timing code is also
present in these two callbacks.

The transfer packets have the following structures:

Fig 4.3 Logic diagram of the netX application

Member name Usage
u16CtrlState signal for loop timer

i16MeasPosX X-axis position (encoder raw value)
i16MeasPosY Y-axis position (encoder raw value)
i16FMeasX X-axis motor current (ADC raw value)
i16FMeasY Y-axis motor current (ADC raw value)
u16TastStat button statuses (0 – pressed)

u16LoopTime loop time (microseconds)
u16MainTime total time spent in USBP_vMain_Function

(microseconds)
u16CallbackTime total time spent in communication callbacks

(microseconds)

Member name Usage
u16CtrlState signal for loop timer
i16SollPosX X-axis desired position (not yet used)
i16SollPosY Y-axis desired position (not yet used)
i16FSollX X-axis commanded force (milliN)
i16FSollY Y-axis commanded force (milliN)

ADC “raw values” are the exact values read from the signal converter. These values
can be transformed into more convenient units of measurement, like radians or
degrees, on the PC side.

The motor commands will be integers in the -10000 ... +10000 range, where each
increment represents 1 mN, and give the force expected to be exerted at the point
immediately below the button-area of the handle.

The joystck was calibrated by measuring the forces output at that point on the joystick
when the DAC was issued one from a set of commands. Each axis had 14 points
measured for the positive and 14 points for the negative direction. Based on these
points, a look-up table with interpolation allows the joystick to convert mN into
values to send to the DAC.

Tbl 4.1 Transmission packet: typedef struct typMeasVal

Tbl 4.2 Reception packet: typedef struct typCmdVal

A special note: the next command above 3600 issued to the DAC resulted in the
motor sinking a large amount of current, but not outputting much torque. Therefore,
DAC commands are limited to 3600, and the maximum forces that can be
commanded are about circa 7N.

4.4 Performance of firmware

Using a map file generated from building the joystick software with an evaluation
Hitop toolchain, and summing all bytes needed by USBP files, the following results
are obtained for USBP code and data sizes:

Fig 4.4 Motor calibration measurements

Files\Memory sections text rodata data bss common
usbp_driver_main.c 2716 428 0 0 96
usbp_netx_hwaccess.c 0 0 2 0 12
usbp_netx_perfmeas.c 340 0 4 1 24
usbp_descriptor.c 0 286 0 0 0
usbp_config_callbacks.c 4 24 0 0 0
usbp_config_endpoints.c 0 28 0 0 0
usbp_config_misc 0 0 1 0 0
usbp_netx_register_defs.c 2740 108 0 0 0
usbp_config_const.c 40 0 0 0 4
usbp_hid_class.c 172 0 0 0 2
Total 6012 874 7 1 138

Performance measurements show that USBP_vMain_Function requires 6
microseconds to complete (this is the difference between total and callback time).

There are wait-states when accessing the USB hardware. For example, the
USBP_vGrab_Status_Bits function, consisting merely of two reads and two writes to
USB hardware registers, uses 2.5 microseconds. The value was obtained by using
performance measurement routines placed around this function. It follows that
minimizing the number of accesses to USB registers is desirable.

4.5 The joystick demo application

The previous version of the ROKVISS joystick had a demonstrational application
running on LINUX, to show the joystick's force feedback capabilities. The same
application was reused in this diploma work for the netX-based joystick, with only
three modifications: the communication strategy (discussed in chapter “5.2 Linux -
libusb”), integrating loop time measurments in the application, and the addition of
keyboard input.

For the new loop time functionality, the application will read the signal value
(u16CtrlState) and send it back unchanged to the netX. It will also read and then
calculate the average of round-trip time values sent by the netX.

Keyboard input was added because at the time the joystick was not equipped with
buttons. Now, either pressing a key or a joystick button will perform various

Tbl 4.3 Amount used from memory sections (bytes)

functions, like changing the current scenario, or changing the value of one of the
scenario's parameters.

Key Usage
Y y previous scenario
C c next scenario

W w previous scenario parameter
S s next scenario parameter
D d increment current scenario parameter
A a decrement current scenario parameter
L l set down-left corner position
P p set up-right corner position
Q q quit program

The scenarios consist of the following:

– “gummiband”: the joystick moves an elastic band across the screen.
The band can catch a ball, lift and throw it, and the elastic force
appearing in the band is output on the joystick. Contact between the
band and the yellow box at the top left is also feelable in the
joystick.

– “sphere”: the joystick moves a yellow ball on the screen. At the
centre is a large and fixed cyan ball. Contact between the two balls
can be felt in the joystick.

– “billiard”: the joystick moves a magenta ball on the screen. Impacts
with the other balls or with the edges of the screen can be felt in the
joystick.

All collisions in the program are modelled as elastic, with some viscous damping. The
diameter of the balls in scenarios “gummiband” and “billiard” are proportional to their
initial masses. Some masses can be changed during a scenario's run.

Tbl 4.4 Key input to the joystick demo application

Fig 4.6 Joystick demo application: scenarios

5 The USB device drivers

On the host side of the USB connection, there must exist functional parts that can
handle a USB device- typically, a software driver. It is the role of this driver to
provide an interface for an application program running on the host to the USB host
controller driver, and allow the application to detect that a certain device has been
connected, work with that device, detect when it is disconnected. Most often, while a
USB device driver is not part of an operating system kernel, it nonetheless is made to
operate in kernel-space and is a kind of OS extension.

In this chapter I will present the “drivers” made and/or used during this diploma work
on various operating systems: Windows XP, Linux, QNX. The title “driver” is a bit of
a misnomer because most of these software pieces are not the typical kernel-space
driver, but they nonetheless provide the same service to the application.

5.1 USB communication overview

The next diagram illustrates a typical information and request flow on the USB bus.
Note that it is always the Host that initiates data transfers. The SOF token will be
generated periodically by the Host hardware.

In this example, the Host has nothing prepared for the first frame. The device driver
on the Host allocates two transfers (one transmission, one reception) which will take
effect on the next frame. On the device side, the device prepares data for transmission
when the SOF event is detected by the hardware.

On the second SOF, the device will not prepare new data, because the old packet was
not sent yet. However, during this second frame the Host will request data from the

Fig 5.1 Software hierarchy on the Host

device, which will trigger on the device side a transmission event. Data will be sent
from the device's USB hardware buffer, and the device software will be notified that a
transmission took place. The Host will also send data to the Host (triggering a
reception event on the device side). As the read and write operations complete, the
USB driver on the Host notifies upper layers (the device driver software on the Host),
and transfers for the next frame are allocated.

On the third SOF, the device prepares new data because a transmission happened in
the previous frame. The rest of the frame goes on just as the second one described in
the paragraph above. Ideally, all subsequent frames will be identical to the third
frame: the device will prepare data on the SOF (because the previous frame contained
a transmission), the Host will request the prepared data and send some data back.
Therefore, the shortest time needed to complete a communication request, whether
read or write, is one frame (one millisecond), which is the theoretical best sample and
round-trip time.

One further issue to consider is that notifications on the Host side are not necessarily
immediate, because they pass through many layers of software. This can add delays in
communication. (On the device however, notifications are usually almost immediate,:
taking as long as a call to an interrupt or a function on simple embedded systems).

5.2 Windows XP – the HID driver

For Windows the existent HID (Human Interface Device) driver was chosen to
connect to a USB device, because this solution promised several key advantages.
First, no new driver had to be written for the device. Second, the HID class is not only
a standard class, it is supported already by many operating systems: Linux and QNX
each have an HID driver. Third, the HID driver for Windows is quite well
documented and using it is fairly easy. Fourth, despite some limitations, the HID class
is theoretically sufficient for implementing simple process control applications. The
relative simplicty of using HID as a class for USB makes it recommended for
developing various USB peripherals for Windows XP [5.1], not all of them
necessarily related to user interfacing. For example, voltmeters can be configured as
HIDs [5.2].

Unfortunately, the documentation for the Linux or QNX HID drivers is incomplete or
hard to find, and it seems that the Windows HID driver is much better performing

Fig 5.2 USB communication flow

than its equivalent on Linux. Therefore, what promised to be a portable solution
remained limited to the Windows family.

5.2.1 HID class: overview

Human Interface Devices are specified by the USB standard as either low- or full-
speed devices that must have a control endpoint and an IN interrupt endpoint, that is
they send data to the host. Typical examples are mice and keyboards. An HID may
also have an OUT interrupt endpoint, which allows it to receive commands from the
host[5.3]. For example, the LEDs on keyboards may be turned off or on by commands
from USB.

Force feedback input devices can be covered by the HID, or by a special extension of
the HID class, the Physical Interface Device class (PID). All PIDs are HIDs, and are
controlled by the same driver[5.4].

Because of their limitation to full-speed and one pair of interrupt endpoints, HIDs can
send at most 64 bytes each millisecond. They can receive the same amount of data
from the Host at the same speed.

To be recognized as an HID, a device must provide an HID class descriptor and an
HID report descriptor. The HID class descriptor gives the version of the class
specification, the type and number of HID descriptors to follow- usually, one report-
and the length of those descriptors. The HID report descriptor gives the structure in of
the data packets: how many records, how long, what function they serve, for example
commanding the Caps Lock LED or giving information on X-axis displacement.

Of these, the HID report descriptor is problematic, because it must be written
consistently. For example, the number of declared in-going or out-going bits must
match the number of bits allocated to declared uses. See chapter “6.2.2 Report
descriptors” of the Device Class Definition for HID document for more information.
A general recommendation is to start with a working setup and change it in small
steps, testing each one of them.

The HID driver gives access to the raw data of a report. Therefore, the application
may choose to ignore the uses allocated to the bits by the descriptor. However, the
driver will reject reports if they are not consistent in byte length with the byte length
calculated from the sum of all records declared by the descriptor, or the descriptor
itself is not correctly written. In this case, the application would read no data from the
device, and attempts to write to it will fail.

One final issue is device caching: the driver will “remember” the devices it saw
connected by their description and serial number strings. If the report descriptor is
modified, but none of these strings, then the driver will not request the report
descriptor and not be aware of the changes. To avoid communication problems, every
change in the report descriptor must be accompanied by a change in the string
descriptors.

5.2.2 Using the HID driver: usbhidio

The source code for using the HID driver was taken from a free HID enumeration and
testing utility, usbhidio_vc6, developped by Jan Axelson from www.lvr.com. It is
meant to assist in developing and testing HID peripherals. With only a slight
modification, it was used in this diploma work; annex “A5 Testing USB on
Windows” describes how to build the source code. The Microsoft Windows Driver
Development Kit (Windows DDK), free for non-commercial applications, is also
necessary in order to build the code.

Accessing an HID is, from the point of view of the application, similar to accessing a
file. Once the HID is found, a file can be opened to represent it. Reading and writing
to this file exchanges data with the device. These operations can be overlapped, and
therefore performed simultaneously (in the same USB frame).

One issue is to find the device. A loop enumerates all connected HID devices, looking
for certain Vendor and Product Ids. If it finds them on a device, it opens file handles
to that device. Once the handles are successfully opened, communication is possible.

The modification from usbhidio.c comes in the form of a file buffer flush performed
through HidD_FlushQueue on the read file handle. With the original usbhidio code,
there would be an increasing delay between the data the application sends to the
device, and the data the device actually receives. The cause was likely the internal
buffering inside the HID driver. Flushing the buffer assures that the delay between the
moment that the device sends data, and the moment the application receives it, stays
constant.

5.2.3 Running a USB communication in Matlab (Windows XP)

A Simulink model (joystick_test_WIN.mdl) was used to maintain a dialogue with a
USB peripheral. A MEX function is used to interface Matlab to the HID driver. To
assess performance, measurements of “round-trip time” are used.

Round-trip time is the time measured, on the USB device, between preparing a packet
of data for the Host (usually, on a SOF event), and the moment when the response to
that particular packet of data is received from the Host. Being much simpler and with
fewer processes running, the device can measure time easily and accurately (up to
microsecond resolution), with negligeable and/or constant delays between events on
the USB and the reaction to them in software.

To identify data packets, the USB device sends a counter inside each of them; it also
will start a timer upon doing so. The application on the Host will send the same value
it receives for this counter back to the device. The USB device, on a reception event,

will- if the counter value received from the Host matches the expected one- stop the
timer. The counter value is incremented when a new packet is prepared for sending
(ideally, at each SOF event).

Two different timers (or pairs of measured time values, from the same timer) are used
in alternation, because between the moment when a packet of data is sent and the
moment when the answer to that packet comes back, another SOF takes place.

Data will be prepared on a SOF event only if the previous packet of outgoing data was
sent. The counter is incremented only when a packet is prepared. A timer is only
started if it was not already running. All these steps are necessary to ensure correct
functionality even if the Host will not request data on each frame, and will delay
response to packets more than the ideal situation presented in figure 5.2.

Fig 5.3 Measuring round-trip time

A snapshot of the simulink model is shown above. The XY Graph has been added to
allow a graphic tracking of the joystick. Experiment has shown that NO XY plots
should be used, if communication performance is desired. When the XY Graph is
active, round-trip times show a tendency to increase, and start from double of what
can be achieved without XY Graphs running.

Fig 5.4 Simulink model: joystick_test

The figure above shows the loop time in microseconds with the model running in
“normal mode” for six minutes. Running in “external mode” makes the model more
resistant to events inside the Matlab window, but still not with real time performance.
Round-trip time varies typically from 2 to 5 milliseconds, rarely getting as low as the
theoretical best of 1 millisecond. A simulation step typically takes about 2
milliseconds of real time.

A few notes on this figure: the large spikes at the beginning are caused by the model
updating an XY Graph, and are rare compared to smaller values. Closing the XY
Graph, leaving only the looptime plot open, makes the large spikes disappear. After
that the model exhibits usually from 2 to 5 millisecond round-trip time, but with very
many spikes. The Matlab windows should be left alone: not resized nor moved, no
changes to parameters.

5.2.4 Controlling position from MATLAB via USB

As a further test of the quality of USB communication in Windows, a small motor
position control application was implemented. The netX microcontroller on the
joystick will measure, via a quadrature encoder, the position of a motor, and relay

Fig 5.5 Round-trip time vs. simulation step plot: Matlab, normal mode, Windows XP

current commands to it. The program running on the netX for this application is very
similar to the joystick program, except that in this case only one motor is controlled
rather than two. It is described in annex “A3 Monitoring a motor with netX”

The control algorithm is carried out by Matlab, in a Simulink model described in
annex “A5.2.2 Motor position control in Simulink”. The control algorithm
communicates with the netX via USB.

The motor is a DC servo with a nominal supply voltage of 24V. Its electrical time
constant[5.5] is 154.54 microseconds, and was deemed negligeable in this application.
The mechanical time constant is 16 milliseconds. The moment of inertia, according to
the datasheet, is 49g*cm2. The motor's current-to-torque constant is 41mNm/A. The
viscous friction was measured by putting a constant current through the motor and
measuring the speed, and its value is 9.2mN*cm*s.

The quadrature encoder used to measure its position produces 4096 impulses per lap.
netX contains a quadrature decoder hardware capable of counting 65536 impulses
before rolling over. This range is extended via software to a 4-byte signed integer
variable (32bits), to allow position to be tracked across more laps.

The current through the motor is controlled by a PWM with duty cycle set by a
voltage output by a 12-bit DAC.

On the PC, the Simulink model will compare the motor position with a desired
position (measured in radians), and calculate what current the motor should consume
to reach that desired position. The control algorithm used is PI (proportional
integrative). A repeated square wave is used as an input for the desired position, in
order to assess response time and overshoot.

The motor will be modelled using a current-to-position transfer function [5.3]:

Hmot s=
s
I s

= 1
 J⋅s2d⋅s

where J is the moment of inertia and d is the viscous friction (measured in A*s2 and
A*s respectively, by scaling J and d with the motor's torque-to-current constant).
Electrical time constant is considered 0.

The motor PWM command circuit and encoder are modelled by constant-1 transfer
functions. The raw value read from the encoder will be multiplied by a conversion
constant to get the position in radians; the value sent to the command circuit is first
multiplied by a conversion constant to change the amperes commanded by the control
algorithm into a DAC command.

For a first step, the control algorithm is considered as time-continuous, and an added
delay block gives a time-discrete character to the control (Ts is the round-trip time):

Hdel s=e−s⋅Ts

The control algorithm will be a position (angular) to current transfer function, and will
have the expression:

Hpi s=kp pi
ki pi
s

The kp_pi and ki_pi parameters must be positive, and it is given that:

Ti= kp
ki

Because the control system will not provide a constant round-trip time, the phase
margin is used to tune its parameters. This way it can gain some resistance to rare and
relatively small increases in round-trip time. The larger the phase margin the more
resistent, and also with less overshoot and fewer oscillations, the system.

The problem is to find the kp and ki, control parameters, given the motor parameters J
and d, the control loop parameter (usual) round-trip time Ts, and some additional
tuning related parameters like the desired phase margin.

The open-loop transfer functions obtained is simply the product of the control
algorithm and the motor transfer functions:

Hol pis=
kp pi⋅ski pi
J⋅s3d⋅s2⋅e−s⋅Ts

From the gain and phase expressions,

∣Hol pi ∣= ki pi2 kp pi
2⋅2

d 2⋅4J 2⋅6

Arg Hol pi =−⋅Tsatan
kp pi⋅
ki pi

−atan
J⋅
d

and imposing conditions that gain be one at a frequency ωg and phase margin be φmg,
the subsequent expressions

ki pi=
kp pi
Ti pi

 kp pi= d
2⋅g

4J 2⋅g
6

g
2 1
Ti pi

2

=atan
kp pi⋅g

ki pi
=mgg⋅Tsatan

J⋅g

d
 0

2
 Ti pi=

tg
g

permit calculating the control parameters for the PI algorithm. If φ does not respect
the condition in paranthesis, then it is not possible to obtain the desired phase margin
at the given frequency.

Bode plots of the resulting system are produced, in order to check that the imposed
phase margin is indeed obtained, and that the gain margin is positive.

Finally, the control algorithm is discretized using a bilinear transform, to yield the
following expression, which can be implemented in the Simulink model:

y [n]=x [n]⋅kpki pi⋅
T s
2
x [n−1]⋅ki pi⋅

T s
2
−kp y [n−1]

where y[n] is the command (current) at step n, and x[n] is the difference between
prescribed and actual position at step n.

The figure below shows the motor control behaviour with a square wave used as the
prescribed postion value. The open-loop system was tuned to have a 60o phase
margin, and gain one at 7rad/s.

The controller is quite quick to react, the time needed by the actual position to reach
90% of the prescribed value, as measured on the square wave, being 120 milliseconds.
Overshoot is small (6 radians for a 50radian step) and oscillations quickly damped on
the square wave.

Despite the variation in round-trip time however, the controller can do its job of
bringing the motor to the desired position, even when the load on the motor varies (for
example, by squeezing the shaft to make it harder to turn, and thus increasing the d
parameter). While not suited for precise or safety-critical uses, this setup suggests that
hobby or educational process control or robotics applications may employ USB
connections even without real-time operating systems.

5.3 Linux – libusb

libusb, an open source solution hosted on http://libusb.sourceforge.net, supports
various operating systems (Linux, various versions of BSD, MacOS X; a Windows

Fig 5.6 PI position control, with a square wave used as prescribed position

package may also be available in the future) and is meant as a general platform upon
which USB device drivers can be built[5.6]. Well documented, easy to use, it is free
of charge. Linux systems do not necessarily come with libusb, in which case an
administrator must install it.

Although initially using the HID driver was attempted, this approach was abandoned
vendor-class was used instead. An HID would have been claimed by the poorly
documented Linux driver. While it is possible to tell it to ignore some devices, this
requires a few configuration files to be rewritten and the kernel and driver recompiled.

In the end, because vendor-class imposes no requirements on the devices and libusb
can connect to any device not claimed by another driver, this solution proved simpler
than the Windows XP HID-based approach.

Finding and connecting to a USB device is similar to the Windows method: all USB
devices are cycled through, looking for one that matches a given Vendor Id - Product
Id pair. If the device is found, a set configuration request is issued and an interface
claimed. Note that all requests necessary to connect to or disconnect from a device
must be made explicitly, because no other driver will automatically handle them.

Sending or receiving data must be made, in this case, through usb_interrupt_write and
usb_interrupt_read respectively. Other transfer types (bulk, control, isochronous) have
their own functions. All of these functions are blocking and should return when the
operation is either finished or timed out. Annex “A6: Testing USB on Linux” gives
the source code.

All work shown here and all measurements were performed on a Linux system with
the scheduler running every millisecond.

5.3.1 Running a USB communication in Matlab (Linux)

A Simulink model (joystick_test_LINUX.mdl) identical to the Windows one except
for the MEX function used to connect to the USB, was used to assess Matlab's
connection to the USB on Linux.

A plot of measured round-trip times is shown below. Round-trip times are measured
by the same method as described in the previous chapter. The device prepares data for
the Host on SOF events. The plot shows round-trip time measurements with the
model running for about five minutes. A simulation step takes approximately 4
milliseconds.

The typical performance is about 6 milliseconds. Random spikes, like in the Windows
version, are present. A periodic worsening (about each 66 seconds) is also visible,
probably caused by some process in the system. Just like the Windows case, the XY
Graph should be closed as it severely affects performance.

Linux Matlab's poor performance (compared to Matlab on Windows) is due to the fact
that the functions used here are blocking. This means that the transmission request is
only processed once the reception is finished, and never will the two share the same
frame, unlike the Windows case. The next chapter will show a way around this
problem.

5.3.2 Running a USB communication in joystick demo

The old joystick demonstration program was used for the new, netX based joystick.
The application remained unchanged except for the USB communication code. The
old driver proved incompatible with the new kernel and had to be replaced with the
libusb-based code.

The single difference between the Matlab and the joystick demo communication is the
use of threads and signaling in the case of the latter.

Fig 5.7 Matlab (LINUX) round-trip times, in normal mode

The joystick demo is split in three threads: a read, an update scenario, and a write
thread. The update scenario thread is called periodically at two milliseconds, an
interval which can be achieved reliably if the scheduler works every millisecond and
the update scenario thread uses few processor resources. It uses the most recent packet
of data available from the read thread. The read thread itself loops continuously, and
via a mutex protocol it sends data to update scenario. The write thread waits for a
signal from update scenario before attempting to send data on the bus.

Round-trip time measurements are sent by the joystick on each communication. The
joystick demo application accumulates a sum of them in the update scenario thread. It
counts how many update scenario steps happened in the course of three seconds, and
will calculate an average round-trip time for those three seconds by dividing the
round-trip time sum to the number of update scenario runs. It will also compute the
average interval between two runs of update scenario. Once an average round-trip
time is calculated, the roud-trip time sum is reset to prepare for the next
measurements.

These calculated values (average round-trip and update times in a three second
interval) are displayed in the console window of the application. Taking 37
consecutive of these values, the following were obtained:

Min [us] Max[us] Average[us] Standard deviation[us]
Round-trip 2076 3863 2812.97 394.09
Update 2006 2090 2021.14 18.71

Fig 5.8 Joystick demo thread synchronisation

The joystick demo application performs much better than Matlab, because of its usage
of threads. It still, however, does not perform with hard real-time reliability, round-
trip times varying by large amounts. Like the Windows case, this might be enough for
some non-demanding applications.

5.4 QNX – usbd

usbd is the library meant to assist in developing USB device drivers for QNX[5.7].
The current version has some limitations (callbacks for vendor requests are not
supported, High-speed USB has no support for isochronous or split-isochronous
transfers[5.8]) but these did not affect my attempt to connect a device via USB to a
QNX computer.

USB is not always automatically started when QNX boots, so the root user should
issue an

io-usb -duhci -dehci -dohci

command to enable the USB ports.

Like in the Linux case, all connected USB devices are enumerated, and when one with
the looked after Vendor and Product Ids is found, it is configured and its interface
claimed.

Unlike Linux, data transfers are two step and non blocking. First, a USB Request
Block (URB) must be prepared, then the URB must be submitted to the USB stack.
When the transfer actually takes place on the bus, a notification via callback is issued
[5.9].

Table 5.1 Joystick demo thread round-trip and update times statistics

In order to achieve “blocking I/O” behaviour, that is, have the application wait until
the bus operation completes but without loading the CPU in this time, POSIX
condition signalling is used. The main thread issues requests to the USB stack, and
then enters a wait on condition (it releases the CPU throughout this time). Signaling to
fulfill the condition happens in callbacks, activated by usbd when the requested
communication events are completed. The order of completion is not important, both
events, reception and transmission, must finish before the condition is signalled and
the waiting exited.

5.4.1 Running a USB communication on QNX

Unlike the previous operating systems, a USB communication flow on QNX adds a
delay between the moment that a USB event takes place, and the moment that the
application takes note of it. Specifically, an application is not informed immediately
that a request (a transmission or a reception) has been completed. Rather, the
application is notified on the start of the next frame. This is done probably because it
simplifies the USB driver code, and assists in keeping real-time behaviour.

Fig 5.9 QNX: accessing USB with blocking I/O

In the figure above, an example communication flow between a “regular” device and a
QNX Host is shown. The consequences of the extra delay inserted by QNX are that
the data sent by the device waits for 2 milliseconds before reaching the application,
and the round-trip time becomes 3 milliseconds. An assumption is made that once the
application on the Host is notified of new data, it can calculate a response and request
new transfers within one millisecond.

On the first SOF the device prepares data, but this data will only be sent on the second
frame, and reach the application in the third. The application will prepare a response,
which will reach the device in the fourth frame, 3 milliseconds after the initial data
was sent. (The data sent to the device on the second frame cannot be a response of the
application to data it has not received yet; the data for that transfer has been prepared
and copied to the USB driver buffer before, when the transfer was allocated).

The second packet of data that the device prepares, on frame three (because on the
second SOF the first transmission is not yet ready), is only sent to the Host on frame
four, and will be read by the application on frame five. The reply to this second packet

Fig 5.10 USB communication flow on QNX, variant one

will reach the device on frame six. Communication continues in the same fashion over
the next frames.

There is nothing, short of tampering with the USB driver, that can be done, on the
Host side, to correct this. On the device however, there is a solution to attempt to
reduce the round-trip time slightly. The idea is that the device should only prepare
data on a SOF that will be followed by transfer requests, an “active SOF”. The
problem then is for the device to decide which SOFs are “active” and which are not.

Figure 5.12 shows a simple protocol that the device can follow to decide whether to
prepare data or not. On first SOF, the device prepares some dummy data to make sure
requests from the application on the Host are successful. The data will, just like
before, be sent in the second frame. However, the device will not prepare data on the
third SOF, because it knows now that it will be “not active” (its frame will not contain
transfers). Instead, since the pattern of active/inactive frames is predictable, the device
can tell just by counting SOFs which frames will have transfers and which will not. It

Fig 5.11 USB communication flow on QNX, variant two

will then try to prepare data as close as possible to the start of an active frame. When
an inactive frame starts and the device receives the SOF packet, it will start a timer
which will elapse slightly before the start of the next frame. When this timer elapses,
the device prepares data to be sent to the Host.

The interval between the timer elapsing and the start of the next frame is called in this
document the “anticipation interval”. Its purpose is to make sure that when the active
frame starts, the device has the data prepared. The anticipation interval only needs to
be long enough to give the device time enough to prepare the data.

The round-trip will only be 3ms on the first transfer after establishing a connection; in
this transfer the device finds out which frames are active. After that, using active
frame anticipation, the round-trip can be reduced to 2ms (plus the anticipation
interval).

This protocol needs two assumptions in order to deliver the two-millisecond round-
trip time: the application on the Host can calculate a response within a millisecond of
being notified of events on the bus, and will prepare both a transmission and reception
every two milliseconds. If these assumptions do not hold, it should still be the case
that a regular pattern of active/inactive frames will occur, and the “active frame
anticipation” can be adjusted accordingly.

To measure the round-trip time, a simulink model (joystick_test_QNX.mdl), compiled
with RT Lab, was run on a QNX computer with the graphical interface provided by a
Linux computer running Simulink in external mode.

As expected, QNX performs reliably and can maintain a round-trip time with very
small variations. A plot is given below.

The round-trip time stays at about 3000 microseconds, with very small differences
between one value and the average. This remains so even if the Simulink model is
stopped and then restarted.

The screenshot below shows a fragment of event tracing for the QNX system. The
USB interrupt is generated every 1.995 milliseconds as measured by the QNX clock.
This proves that notifications arrive to the application only every two milliseconds.

The screenshot also shows the calls to condition wait and condition signal that
produce the blocking I/O behaviour.

Having the device anticipate the active SOFs can reduce the round-trip time to 2
milliseconds plus an anticipation interval. The plot below shows a communication
using 400μs anticipation, running for 6 minutes.

Fig 5.14 Events tracing in QNX Momentics

Fig 5.12 Round-trip time on QNX

The anticipation interval can be much smaller however, depending on how much the
device needs to prepare data. This usually means a few tens of microseconds.

Fig 5.15 Round-trip time with SOF anticipation

Fig 5.15 Round-trip time with SOF anticipation

6 Conclusions

During this diploma thesis,a USB firmware library was developped for the netX
processor. It is reconfigurable and portable, useful on different projects and hardware
platforms. On the PC-side, several small pieces of code were implemented, in order to
allow a USB communication to be opened and sustained. The USB communication
code in the ROKVISS joystick demo has also been changed, because the old driver
was not workable with the new kernel. Measurements of round-trip time for the USB
connection, on various operating systems, have been performed.

These measurements show that the round-trip time under Windows or Linux is
variable, highly vulnerable to various loads on the system. These loads cannot be
controlled by an application, and can make the system cease USB communication for
as long as or longer than 65 milliseconds. However, such instances are rare and round-
trip times tend to cluster between 2 and 5 milliseconds. Some applications (e.g.
educational or hobby robots) may tolerate this variation, especially if fitted with safety
breaking features in case communication ceases for longer periods of time. Neither
Linux nor Windows are real-time operating systems, so these results are not
surprising.

QNX can maintain a round-trip time of 3 milliseconds (and a sample time of 2
milliseconds) on a USB connection. Using anticipation of active frames, the round-
trip time can be reduced to 2ms plus the anticipation interval.

The total amount of data that can be transferred (either in or out) between a computer
and a device, on full-speed USB, using interrupt transfers, is 1920 bytes maximum if
the device supports 30 data endpoints. With a sample time of 2, and round-trip of 3
milliseconds, this is adequate for controlling a robot arm, and leaves a fair amount of
time for data processing.

For best performance, overlapped I/O or separate read and write threads should be
used. Also, only one device should be connected to a USB port if time performance is
critical, because this will reduce jitter caused by the variable transfer order on the
USB. Since each USB port on a computer has a bus of its own, independent of other
ports (as the Windows control pannel or Linux lsusb command show), and since there
are several USB ports on a computer, this is not a severe issue.

As a future development, High-speed USB should be tested. A newer standard, it is
for now less available on microcontrollers, but promises potential round-trip times in
the hundreds-of-microseconds range. The amount of data that can be carried by a
tranfer also increases (a single interrupt endpoint can carry 1024 bytes), meaning that
round-trip time will be determined more by speed of data processing than by bus
characteristics.

7 Annexes

7.1 A1: CD contents

/Embedded

/Bootwizard : auxiliary application from Hilscher

/USB_NetX_Joystick : embedded joystick program

/USB_netX_poscont : program for a simple positional control
application

/netX_Flasher : auxiliary application for flashing the netX board

/PC

/Linux

/Matlab : Simulink model and MEX function to test the joystick

/Joystick_demo : joystick demo application

/QNX

/Matlab : Simulink model and MEX function to test the joystick

/Windows

/Matlab : Simulink models and MEX functions to test the
joystick; a custom mexopts file.

7.2 A2: Joystick program

Located on the diploma CD in the folder /Embedded/USB_NetX_Joystick is the Hitop
project “netX_joystick.htp”. This should be built with a Hitop tool-chain. The project
file stores file paths as absolute, and may need to be manually edited to correct the
paths.

A debug connection via a Tantino probe must be active when attempting to open the
project. Through the debugger it can also be downloaded to the netX chip.

The joystick hardware should be available in order to try this application.

In order to try the Anticipated Active SOF communication for QNX, make sure that
the __QNX_HOST__ macro is defined in the main.c file. Undefine or comment this
macro if you do not wish to use this functionality or do not wish to connect to a QNX

Host.

7.3 A3: Monitoring a motor with the netX

Located on the diploma CD in the folder /Embedded/USB_netX_poscont is the Hitop
project “netX_poscont.htp”. Opening,debugging and building are identical to the netX
joystick application.

In order to try this application, a DC servomotor with power electronics should be
connected to the control board of the joystick. The motor should either be free of load,
or have a load such that it can turn several laps. The motors mounted in the joystick
do NOT qualify for this.

A quadrature encoder should be fixed to the motor shaft, and its data and supply lines
also brought to the joystick control board.

7.4 A4: Flasher App

Located on the diploma CD in the folder /Embedded/netX_Flahser is the Hitop project
“netX_Flasher.htp”. Opening,debugging and building are identical to the netX
joystick application.

Flashing an application to the joystick control board is not done directly from Hitop,
because it does not support the kind of Flash chip on the control board. Instead, follow
these steps to Flash an application:

– build the application that you wish to flash

– run the Bootwizard program from Hitop on the elf file resulting
from the build. Run the “Build bootimage” wizard, selecting
“Internal RAM” as the destination and “MW209B 8bit Parallel
FLASH” as the source devices. The Bootwizard application, with
an updated xml file, can be found on the diploma CD in the /
Embedded/Bootwizard folder

– the Bootwizard will produce a bin file from the elf, adding a
bootimage. Use the BinToC application in the netX_Flasher folder
to convert this into a c-file. A batch file is provided as an example
of how to do this.

– Compile the resulting c-file within the flasher application (replace
the CDump.c file with the new c-file). Link, load and run the

resulting application.

The flasher app simply uses a c-file to store a large array of bytes (the program that
needs to be flashed) and copies it to the Flash memory chip on the joystick control
board.

The Bootwizard will make an application built by Hitop into an application that can
be booted on the netX. It prepends a bootimage, giving some information about the
application to the netX's hard-coded bootloader.

7.5 A5: Testing USB on Windows

7.5.1 A5.1: Joystick_test for Windows

The Simulink file joystick_test.mdl is necessary for this purpose. It can be found on
the diploma work CD, /PC/Windows/Matlab folder.

Before this model can be used, the readROK.cpp file must be built by issuing a
mex readROK.cpp

command in the Matlab window. The Windows DDK must be installed on the
computer for the command to succeed, and the mexopts file must be adjusted by
adding include paths for the HID headers from the DDK, and the libraries hidsdi.lib
and setupapi.lib. A sample mexopts file is also included on the diploma CD.

7.5.2 A5.2: Motor position control in Simulink

The Simulink file motcontrol.mdl is necessary for this purpose. It can be found on the
diploma work CD, /PC/Windows/Matlab folder.

Before this model can be used, the motINTF.cpp file must be built by issuing a
mex motINTF.cpp

command in the Matlab window. Just like the previous case, the Windows DDK is
necessary for the command to be successful, and the mexopts file for Matlab must be
adjusted accordingly.

The control parameters must be assigned values before the model can start. This can
either be done by manually assigning values to them in the Matlab window like this

ki_pi = 0.120;

kp_pi = 0.110;

or by following the procedure described in the next section.

A5.2.1: Tuning the PI controller

The Bode_pos_PI.m file contains a function to tune the control parameters. Invoke the
function by issuing the following command

[kp_pi, ki_pi] = Bode_pos_PI(J, d, omega_g, Ts, phase_margin)
where J, d, omega_g, Ts and phase margin are the various parameters (inertial
moment [A*s2], viscous friction[A*s], omega_g [rad/s], Ts [s], phase_margin[deg]).

The function will return a [0, 0] pair with the message “Obtaining phase margin
impossible” if the phase margin is too large for the selected omega_g, given the other
system parameters. If however the phase margin can be obtained, a pair of values is
returned and bode plots of gain and phase for the open-loop system are produced to
check the results.

kp_pi and ki_pi are authomatically written to the Simulink model.

7.6 A6: Testing USB on Linux

7.6.1 A6.1: Joystick test for Linux

The joystick_test.mdl file from the diploma CD, /PC/Linux/Matlab folder, can be
used to test communication with the netX joystick. It contains a MEX function that
must be built by invoking in the Matlab window the command

mex readROK.cpp -lusb

In order for the command to succeed, libusb must be installed on the computer.

7.6.2 A6.2: Joystick demo Linux

Located in the /PC/Linux/Joystick_demo on the diploma CD, it can provide a full test
of the joystick functionality: USB communication as well as force-feedback. This
folder contains a KDevelop project, as well as a prebuilt joystick application.

To run the demo, type the name of the executable (joystick”) in the Linux console.
The joystick itself should be connected to the PC before the application is started.

Once communication between the application and the joystick is established, move
the joystick handle to the lower-left corner of its work-space and press “l”. Then,
move the handle to the upper-right corner and press “p”. The position output from the
joystick is now calibrated to move thorughout the entire demo window. After this, the
demonstration can be used to show the force-feedback behaviour of the joystick.

In order to be built, requires libusb to be installed on the computer. For best
performance, the Linux kernel should be recompiled so that the scheduler runs at
1kHz frequency.

7.7 A7 Testing USB on QNX

The Simulink model joystick_test_QNX.mdl, located in the /PC/QNX/Matlab folder,
can be used to test USB communication with QNX. The procedure is slightly different
than the other systems, in that no mex command is issued. Instead, a Real-time
Workshop target must be installed by issuing a

mex readROK.cpp -lusb

command in the Matlab window. After this, the model should be built by using the
Real-Time Workshop build command.

Three files are generated: joystick_test_QNX, joystick_test_QNX_start.sh,
joystick_test_QNX_stop.sh. In order to make these files executable from a QNX
computer, these commands must be issued in a Linux console:

chmod 755 joystick_test_QNX_start.sh

chmod 755 joystick_test_QNX_stop.sh

chmod 755 joystick_test_QNX

After this, the model can be started on the QNX computer by issuing
./joystick_test_QNX_start.sh

On the Simulink side, the “Connect to real-time target” option should be selected, and
the model can now be interfaced from Simulink. Use the “Stop real-time code” to stop
the model. This will finish it on both QNX and Simulink sides.

References

2.1: “Universal Serial Bus Specification, revision 2.0”, April 27, 2000, section “4.4
Bus Protocol”

2.2: id. , section “4.1.1 Bus Topology”

2.3: id. , section “4.2 Physical Interface”

2.4: id. , section “5.3.3 Frames and Microframes”

2.5: id. , section “4.6 System Configuration”

2.6: id. , section “9.6 Standard USB Descriptor Definitions”

2.7: id. , section “9.4 Standard Device Requests”

2.8: id. , section “9.7 Device Class Definitions”

2.9: id. , section “5.11 Bus Access for Transfers”, subsection “5.11.1.2 USB
Driver”

2.10: id. , section “5.3.1 Device Endpoints”

2.11: id. , section “9.6.6 Endpoint [Descriptor]”

2.12: id. , section “5.5 Control Transfers”

2.13: id. , section “5.8 Bulk Transfers”

2.14: id. , section “5.7 Interrupt Transfers”

2.15: id. , section “5.6 Isochronous Transfers”

2.16: id. , section “8.4.5 Handshake Packets”

2.17: id. , section “7.1.12 Frame Interval”

2.18: id. , section “5.6.4 Isochronous Transfer Bus Access Constraints”

2.19: http://www.usb.org/developers/defined_class

2.20: http://www.usb.org/developers/defined_class/#BaseClassFFh

4.1: G. Hirzinger et al., “ROKVISS – Robotics Component Verification on ISS”

4.2: Klaus Joehl et al., “High Fidelity USB Force Feedback Joystick”

4.3: “netX Product Brief”, April 20 2007

4.4: “EtherCAT Communication Specification, version 1.00”, section “4.1
Operating principle”

4.5: Matthias Faehse, “Entwicklung einer Steuerelektronik fur den DLR
kraftreflektierenden Joystick”, February 28, 2007

4.6: “netX Program Reference Guide”, April 20, 2007, section “6.6 System time
with IEEE 1588 functionality”

4.7: id., section “6.9 USB- Serial USB-Interface”

4.8: (netX forums:) http://board.hilscher.com/viewtopic.php?t=176

5.1: The http://www.lvr.com/hidpage.htm

5.2: “Device Class Definition for Human Interface Devices, version 1.11”, June 27,
2001, section “2.1 Scope”

5.3: id. , section “4.4 Interfaces”

5.4: “Device Class Definition for Physical Interface Devices, version 1.0”,
September 8, 1999, section “2 Functional Overview”

5.5: Ivan Bogdanov, “Conducerea cu calculatorul a actionarilor electrice”, Ed.
Orizonturi Universitare, 2004, section “4.1.3.1 Modelul matematic operational
al MCC”

5.6: http://libusb.sourceforge.net/documentation.html

5.7: http://www.qnx.com/developers/docs/6.3.0SP3/ddk_en/usb/about.html

5.7:
http://www.qnx.com/developers/docs/6.3.0SP3/ddk_en/usb/beforeyoubegin.htm
l#LIMITS

5.8: http://www.qnx.com/developers/docs/6.3.0SP3/ddk_en/usb/usbd_io.html

