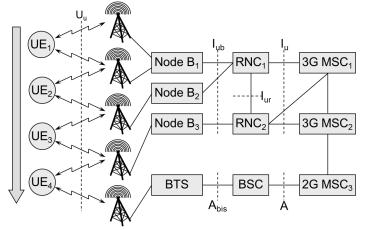
Integrated Digital Networks

1. Handover types in 3G networks.


https://intranet.etc.upt.ro/~DIG_INT_NET/course/6_Mobile%20networks17_10.pdf, 46, 50, 51

Handover

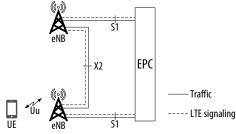
- Transfer of a link between 2 neighboring cells/antennas
- UMTS main handover classes:
 - Hard handover
 - Similar to GSM handover
 - Includes
 - Inter-frequency handover (change carrier frequency)
 - Inter-system handover (between UMTS and other systems)
 - Soft handover (new in UMTS)
 - Only available with FDD
 - Uses macrodiversity
 - fundamental characteristic of CDMA systems
 - mobile equipment communicates with up to 3 antennas simultaneously

Handover types in 3G

- Intra-nod B, intra-RNC (softer handover)
 - UE₁ moves between 2 different antennas of the same Node B (Node B₁)
 - Node B₁ combines and splits the data streams
- Inter-nod B, intra-RNC (soft handover)
 - UE₂ moves from Node B₁ to Node B₂
 - RNC₁ supports the soft handover combining and splitting the data streams

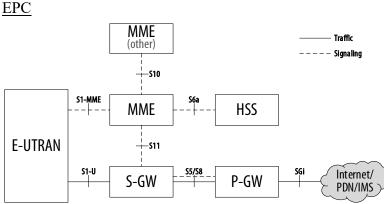
- Inter-RNC
 - UE₃ moves from Node B₂ toward Node B₃=> 2 possible situations
 - Internal (soft) inter-RNC handover, with RNC₁ acting as SRNC and RNC₂ acting as DRNC

- External (hard) inter-RNC handover with relocation of the Iu interface
- Inter-MSC
 - MSC₂ takes over the connection and realizes a hard handover
- Inter-system (hard handover)
 - UE4 moves from the 3G network to a 2G network
 - Important for areas with no 3G coverage
- 2. LTE architecture enumerate the functional blocks and briefly explain their main functions for 3 of them.



IMS - IP Multimedia Subsystem - delivers voice and other multimedia services over IP in mobile networks

EPS - Evolved Packet System


E-UTRAN

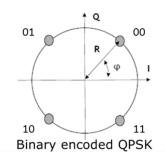
• Handles radio communications between mobile terminals and EPC

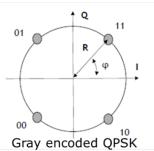
- Evolved Node B (eNB) the only component of E-UTRAN
 - Base station which controls mobiles in one ore more cells
 - Uses analog and digital signal processing functions to
 - send radio transmissions to all mobile on DL
 - receive radio transmissions from all mobiles on UL

- Controls low-level operation of all mobiles using signaling messages (e.g. handover commands)
- Interfaces
 - S1 to EPC
 - X2 to nearby eNBs (optional)
- used for signaling and packet forwarding during handover
- A mobile communicates with only one eNB at a time serving eNB

- HSS Home Subscriber Server
 - central database with information about all network operator's subscribers
- P-GW PDN (Packet Data Network) GateWay
 - exchanges data with one or more external devices or PDNs
 - servers of the network operator
 - internet
 - IMS (IP Multimedia Subsystem)
 - P-GWs which provide connection to PDNs to a mobile terminal do not change during the lifetime of the connections
 - when the mobile switches on, it is assigned to a default P-GW at to have always on connectivity to a default PDN (e.g.internet)
 - later, the mobile can be assigned to one or more additional P-GWs for connectivity to other PDNs (e.g. IMS, corporate network)
 - several P-GWs in a typical network
- S-GW Serving GateWay
 - router forwarding data between enBs and P-GWs
 - a S-GW serves the mobiles in a given geographical area
 - a connected mobile is assigned to a single S-GW
 - the S-GW may change during the connection if the mobile moves to the coverage area of another S-GW (handover/cell reselection)
 - S-GW service area geographical area covered by 1 or more S-GWs
 - mobiles moving within a S-GW service area don't need to change the S-GW
 - Several S-GWs in a typical network
- MME Mobility Management Entity
 - controls high level operation of mobiles through signaling messages
 - security
 - management of data streams (not on the radio interface)

- a MME serves the mobiles in a given geographical area
 - a connected mobile is assigned to a single MME (serving MME)
 - the MME may change during the connection if the mobile moves to the coverage area of another MME (handover/cell reselection)
- MME pool area geographical area served by 1 or more MME
 - mobiles moving within an MME pool area don't need to change serving MME
- Several MMEs in a typical network


3. Digital modulation techniques used in LTE – list, characteristics and comparison.


https://intranet.etc.upt.ro/~DIG_INT_NET/course/7_LTE_20.pdf, 22, 26

Digital modulations in LTE

•

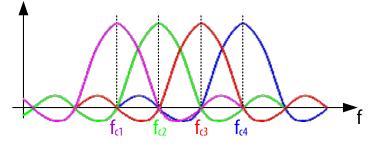
- QPSK
 - Robust, less efficient
- QAM
 - High efficiency, less robust
- Gray encoding
 - neighboring symbols in constellation
 - only 1 bit different
 - limits the number of bit errors

LTE modulation summary

Modulation	No. of symbols	Bits/ symbol	Bit rate/ Baud rate	Robustness	No. of amplitudes	No. of phases
QPSK (4QAM)	4	2	2/1	+	1	4
16QAM	16	4	4/1	+/	3	12
64QAM	64	6	6/1	—	9	52

4. OFDMA – principle of sub-carrier orthogonality, application in LTE. https://intranet.etc.upt.ro/~DIG_INT_NET/course/7_LTE_20.pdf, 30, 35, 38

LTE multiple access

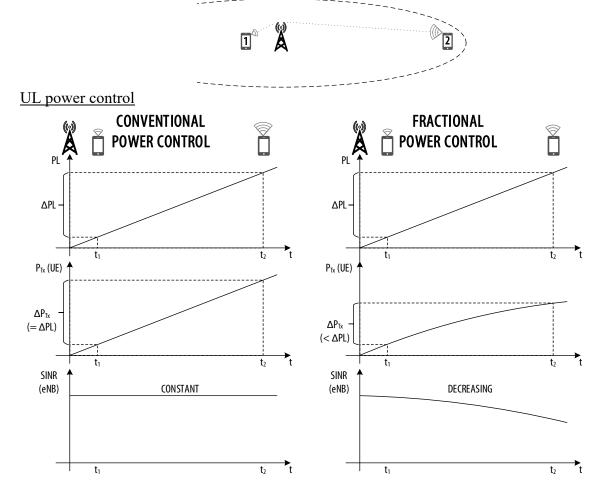

- OFDMA (Orthogonal Frequency Division Multiple Access)
 - Multiple equally spaced orthogonal subcarriers
 - Data stream is split in multiple sub-streams
 - Each sub-stream modulates a subcarrier using 64QAM, 16 QAM or QPSK
 - used on DL
- SC-FDMA (Single Carrier Frequency Division Multiple Access)
 - Uses only a reduced number of sub-carriers (contiguous group)
 - lower PAPR (Peak to Average Power Ratio) compared to OFDMA
 - used on UL
 - Unappropriate for DL
 - eNB uses all available sub-carriers
 - eNB transmits to multiple UEs at the same time

<u>OFDMA</u>

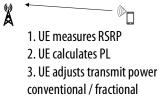
- Data stream is split into multiple sub-streams
- Frequency bandwidth divided into multiple sub-bands (sub-carriers)
- Each data sub-stream modulates (QPSK, 16QAM or 64QAM) a sub-carrier
- Sub-carrier orthogonality
 - the signal sent on a carrier does not interfere with signals sent on other carriers
 - achieved by proper choice of sub-carrier spacing
 - $\Delta f = 1/T (T OFDMA \text{ symbol period})$
 - in LTE, $T = 66.7 \ \mu s => \Delta f = 15 \ \text{kHz}$

Orthogonal carriers

- OFDM spectrum example:
 - 4 carriers spaced by $\Delta f = 1/T$ (= 15 kHz for LTE)
 - at each carrier frequency (e.g. f_{c2})
 - there is a maximum of the spectrum of the signal transmitted on that carrier (f_{c2})
 - all spectra of signals transmitted on other subcarriers (f_{c1}, f_{c3} and f_{c4}) are crossing 0 => => orthogonality (no interference)



5. LTE uplink power control.


https://intranet.etc.upt.ro/~DIG_INT_NET/course/7_LTE_20.pdf, 105-110

Need for power control

- Wireless channel conditions vary
 - UE position in the cell
 - time
- The transmitted signal is adjusted to compensate for the varying conditions
 - Power control
 - Rate control MCS (Modulation and Coding Scheme)
- Power control
 - Transmit power is varied \rightarrow constant data rate
- Rate control
 - Data rate is varied \rightarrow constant transmit power
- On DL eNB transmits with maximum power on all PRBs
- On UL UE follows a power control strategy to adjust transmit power
 - reduce power consumption
 - reduce inter-cell interference
- UEs situated near the center of the cell use lower transmit power
- UEs situated near the cell edge use higher transmit power

- Conventional power control
 - Target: fully compensate the PL (Path Loss)
 - Amount of increase in UE transmit power = amount of increase in path loss
 - Advantage: maintains constant SINR at eNB side
 - Disadvantage: increased inter-cell interference
- Fractional power control
 - Target: partially compensate the path loss
 - Amount of increase in UE transmit power < amount of increase in path loss
 - Advantages:
 - reduced intercell interference
 - increased average cell throughput
 - Disadvantage: worse SINR from UEs near cell edge => lower data rates
- Open loop power control
 - UE calculates the DL path loss
 - PL = Reference eNB transmit power measured RSRP
 - UE uses conventional or fractional power control attempting to compensate the PL
 - $PTx = min(Desired eNB Power + \alpha PL; Pmax)$
 - α fractional power control factor; $0 < \alpha \le 1$
 - Pmax UE maximum transmit power (typically 23 dBm)
 - UE receives no feedback from eNB for power control

- Closed loop power control
 - Allows dynamic UE transmit power adjustment based on TPC commands issued by eNB
 - TPC (Transmit Power Control) commands have up to 2 bits (1 QPSK symbol)
 - Absolute values
 - Accumulated values
 - Transmitted
 - inside UL scheduling grant
 - on a separate power control channel

1. UE receives TPC command 2. UE adjusts transmit power based on TPC 6. Calculate the frequency bandwidth required for a LTE-advanced cell to achieve a data rate of 450 Mb/s on DL with the spectral efficiency of 15 bits/s/Hz. Find a solution to obtain the necessary bandwidth using standard LTE frequency bands.

https://intranet.etc.upt.ro/~DIG_INT_NET/course/7_LTE_20.pdf, 5, 31, 32 Hints:

Use the rule of three to find the amount of necessary bandwidth

15 bits/s1 Hz

450Mbits/sB Hz

B=....

The standard LTE channel bandwidths are 1.4, 3, 5, 10 and 20 MHz.

If the value of B is lower or equal to 20 MHz, then it is possible to use 1 frequency band with the smaller standard bandwidth equal or higher than B.

If B exceeds 20MHz, then carrier aggregation must be used (obtain the desired bandwidth by combining up to 5 frequency bands having standard bandwidths). Examples of carrier aggregation to obtain 40 MHz:

2 bands of 20 MHz or

•

1 band of 20 MHz and 2 bands of 10 MHz.

7. Calculate the maximum theoretical DL data rate for a LTE cell with a bandwidth of 10 MHz, using 2 antennas.

https://intranet.etc.upt.ro/~DIG_INT_NET/course/7_LTE_20.pdf, 60, 75 Hints:

- $D = (no. of antennas) \times (no. of symbols/s) \times (no. of bits/symbol)$
- Max. theoretical data rate
 - All REs are taken into account => 168 [RE/PRB]
 - 10 MHz => 50 PRBs/ms => 50[PRB]×168[RE/PRB] = 8400 [RE/ms]
 - Each RE carries 1 symbol => 8.4×10⁶ [symbols/s]
 - The modulation is 64QAM (**6 bits/symbol**) for all symbols (in order to transmit as many bits/symbol as possible)
 - $D_t = 2[antennas] \times 8.4 \times 10^6 [symbols/s] \times 6[bits/symbol] = 100.8 \text{ Mb/s}$